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Abstract: Observational learning is a widespread phenomenon in var-

ious online marketplaces, e.g. Kickstarter, where sellers often launch a new

product with different versions. Yet few papers explain the seller’s version-

ing incentive from a social learning perspective. This paper explores how

observational learning alone incentivizes monopolists to sell different ver-

sions. The dynamic learning process sheds new light on the multi-version

policy beyond traditional explanations. Furthermore, the quality of con-

sumers’ private information is crucial in shaping two distinct selling strate-

gies. In a market with noisy private signals, the seller provides a single

cheap premium version; with precise signals, the seller prefers multiple ver-

sions.
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1 Introduction

Why do firms sell multiple versions when launching a new product? The

economic literature has provided various explanations, but few of these

give a full picture of what happens in markets that feature a dynamic

observational learning process. Indeed, most existing theories are static

in nature. They only apply to situations where consumers have ex-ante

different preferences. To address this gap, this paper proposes a dynamic

model, where consumers have a common value but arrive sequentially with

different information, and offers a new justification for the multi-version

policy.

By selling multiple versions at different prices, a monopolist can “de-

sign” the dynamics of the learning process, such as in which direction to

herd and when. These learning dynamics, or more precisely, the evolution

of posterior beliefs, will in turn bring variations in consumers’ willingness

to pay and thus shape market demand. The interaction between learning

and selling allows me to establish a key result: when each consumer receives

noisy private information, a cheap premium version is optimal; when the

private information is accurate enough, the seller prefers a multi-version

policy.

Reward-based crowdfunding is a typical example of such a selling envi-

ronment. It is a common practice for sellers to launch their crowdfunding

campaigns with different price-quality packages1. The multi-version policy

is also widely adopted by firms that sell online service products, such as

Grammarly, ChatGPT and D-ID studio. Their motivation is exactly to

let the cheap version go viral. Once the market learns the value of their

1For instance, a comic book writer may offer both a digital version and a paper-
back version of their new book at different prices. A game designer might sell a wide
range of packages, with more expensive ones including premium features to improve
the gaming experience. https://www.kickstarter.com/projects/nogstudio/menyr?
ref=discovery_category
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products, it will hopefully be ready for a premium version. With a simple

and tractable model, I will look into the monopoly pricing and versioning

problems that arise in the new Internet era, and provide a fresh insight into

the optimal selling strategy in various online markets.

The model is built on classical information cascade papers (Banerjee,

1992; Bikhchandani, Hirshleifer, and Welch, 1992). Consider a monopo-

list seller who releases a new product with an unknown common value at

the beginning. The value is high with probability 1
2
. The seller aims to

maximize expected long-run average profits. She can offer a single version

or multiple versions of the product with different observable (fixed) qual-

ities and prices2. An infinite number of consumers then arrive one at a

time, each with a noisy private signal about the value. They also observe

their predecessors’ decisions and obtain public information from there. At

the end of each period, they either choose a version to buy or abstain.

Consumers will generally become increasingly informed over time until an

informational cascade occurs.

The current article will first examine the optimal (fixed) pricing problem

in a single-version benchmark model, focusing on the relationship between

the optimal price and private signal quality. A discussion then follows on

whether to offer multiple versions and at what prices, as the private signal

quality varies.

In the single-version benchmark, choosing a higher price increases the

margin (price effect) but reduces the probability of a buy cascade in the

limit (quantity effect). The relative magnitude of both effects, and hence

the price elasticity of demand, will be determined by the precision of the

private signal. With a noisy signal, the quantity effect dominates the price

effect. The seller prefers to stay safe by setting a low price that triggers a

2For the convenience of analysis, I assume the seller can offer up to two price-quality
packages: a basic version and a premium version.
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buy cascade3 from the beginning. A precise signal instead leads to a strong

price effect, incentivizing the seller to choose a high price. In doing so, she

bets on the 1
2
prior probability that the product has a high value and reaps

the fruit of learning when consumers become increasingly optimistic.

The multi-version model introduces a second trade-off beyond that in

the benchmark case. Now the key question is whether to introduce a

cheaper basic version.4 As usual, information rents come as a cost no

matter how precise the private signal is. With two versions in the market,

the seller has to lower the premium version’s price to prevent high-belief

consumers from purchasing the cheaper basic version.

However, the benefit of introducing the cheaper basic version emerges

only when the private signal is precise enough. To understand the intuition

behind this assertion, consider the case where consumers receive extremely

precise signals. As discussed in the benchmark case, the seller’s top priority

now is to set a high price, as long as the consumers will not immediately

run into a rejection cascade. Introducing a separate cheap basic version

allows the first several consumers to learn at a relatively low price and

makes room for a further increase of the premium version’s price. In other

words, introducing a basic version is profitable here because it relaxes the

constraint of not starting with a rejection cascade in the seller’s problem.

As a result, Proposition 2 shows the multi-version policy will outperform

the single-version policy if and only if the private signal is precise enough.

As the main results highlight the role of private signal quality, let me

describe a real-world situation where consumers may receive private infor-

mation of varying precision. The market for new treatments, as discussed in

(Arieli, Koren, and Smorodinsky, 2022), consists of pharmaceutical compa-

3Technically speaking, the buy cascade starting from the beginning is not an infor-
mational cascade but just a sequence of buy decisions.

4To simplify the model, I assume the production cost of quality is zero. The seller
will always keep a premium version in the market because it generates a higher total
surplus.
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nies as sellers and doctors as potential buyers. Doctors gather information

by using limited free samples within their patient community. The realized

success rate then gives each doctor a private signal about the value of the

new treatment. The signal tends to be more precise if, for instance, doctors

receive more free samples, the samples are similar in effectiveness to the

majority of products, or their patient communities are more diversified.

The last part of the paper discusses the effects of versioning on market

efficiency in information aggregation. The market generally works better

in failing bad projects if we allow for multiple versions. Good projects,

however, are less likely to succeed in a multi-version world.

The theoretical framework in this paper could be a starting point for

future empirical analysis of the interaction between observational learning

and the seller’s decisions. In particular, it brings to our attention an impor-

tant relationship between private information quality and selling strategy,

which has been less studied in the literature.

A substantial number of empirical papers have already explored ob-

servational learning in various places, such as kidney exchange markets

(Zhang, 2010), microloan markets (Zhang and Liu, 2012), music platforms

(Newberry, 2016), and housing markets (Fan, Weng, Zhou, and Zhou,

2021). But few of them examine the effect of consumers’ private infor-

mation quality on the seller’s pricing and versioning choices. According to

Zhang and Liu (2012), investors in microloan markets do behave differently

in the learning process when they find their predecessor’s private informa-

tion is more precise. Based on this observation, the theoretical model I have

developed allows us to move forward to study the optimal selling strategies

in such markets, especially when private information qualities vary across

different products.
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2 Related literature

An important early paper that examines the monopoly (fixed) pricing prob-

lem with observational learning is Welch (1992). In contrast to my model,

he assumes a uniformly distributed state and a finite number of agents.

Moreover, his signal structure is relatively noisy such that the posterior

expected value updates slowly. The issuer (seller) will underprice to com-

pletely avoid a rejection cascade. My paper adds to the literature that

when the private signal turns precise it is optimal to charge a high price

and risk a rejection cascade. The seller makes an even higher profit by

selling multiple versions.

Bose, Orosel, Ottaviani, and Vesterlund (2006, 2008) investigate a dy-

namic pricing problem in the informational cascade setting. Their setup

bears similarities to my multi-version model in that offering multiple ver-

sions with different (average) prices at the outset seems to be a static

alternative to dynamically adjusting the price of a single version. However,

dynamic pricing gives the seller much more leeway to adjust their strategy

accordingly as the learning process goes. In a sense, their seller deals with

small gambles one by one while my seller faces a huge gamble up front.

This paper discusses the optimal selling strategy in this more constrained

environment.

Indeed, a comparison of our results in the case of a patient seller5 shows

a marked difference in the equilibrium pricing and learning pattern. An

infinitely patient seller always chooses a high separating price that reveals

the private information regardless of signal quality in Bose et al. (2008). By

contrast, my seller may offer a cheap basic version that prevents everyone

from learning if the private signal is noisy enough.

Several other papers have also discussed the optimal selling strategy

5As my seller only cares about the long-run payoff, it suffices to compare the optimal
behaviors of a patient seller in the two papers.
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in the presence of social experimentation. Bonatti (2011) studies optimal

dynamic menus to sell new experience goods to consumers with both a com-

mon value component and private taste. Laiho and Salmi (2021) considers

a dynamic pricing problem when consumers can delay purchases. Berge-

mann and Välimäki (2002) investigates how dynamic competition between

firms affects their pricing and entry decisions. This literature assumes sales

generate information via experimentation and simplifies the learning pro-

cess to a Brownian motion. Under this assumption, a lower price generates

more information, whereas, in my model, a low enough price can eliminate

information revelation. Hence, the seller faces a rather different trade-off.

Another closely related literature is menu pricing, beginning with the

seminal works by Mussa and Rosen (1978) and Stokey (1979). Since then,

many articles have attempted to discuss under what conditions a monop-

olist prefers multiple price-quality contracts over a single contract (Salant,

1989; Anderson and Dana, 2009). A more recent paper by Sandmann

(2023) highlights the role of consumers’ risk preferences in determining the

optimality of a single-contract menu. As I mentioned above, the screening

literature typically assumes consumers’ willingness to pay is exogenous. My

paper instead features endogenously formed variations in consumers’ pref-

erences due to the observational learning process. It allows me to unravel

a novel observation on versioning and private signal quality.

3 Model setup: monopoly problem with in-

formation cascades

A monopolist seller plans to launch a new product that may have multiple

versions. An infinite number of risk-neutral agents with unit demand arrive

one at a time. t ∈ {1, 2, ...,∞}.
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State of the world. The core technology of the product has a binary

value V ∈ {0, 1}. Neither the seller nor the agents observe the realization

of the value. They share the same prior probability µ0 := Pr(V = 1) = 1
2
.

Actions. The seller offers two versions of the core product to each

agent: a basic version L = (pL, qL) with observable quality normalized to

one, i.e., qL = 1, and a premium version H = (pH , qH) with qH = 2.6 The

seller announces a price schedule p := (pL, pH) at the beginning which will

be fixed over time. In each period t, an agent chooses a version to buy or

rejects to buy any product. at ∈ {L,H, r},∀t.

Signal structure. Each agent, upon arrival, receives a binary private

signal st ∈ {g, b}. It is symmetric and independent across individuals

conditional on the state V . P (st = g|V = 1) = P (st = b|V = 0) = γ ∈

(1
2
, 1) represents the private signal quality.

Timing.

• t = 0: The state V is realized. The seller chooses a price schedule

p = (pL, pH) without observing the realized state.

• t = 1, 2, ...,∞: An agent arrives at the venue. She observes the

prices, the decisions of previous agents, i.e., the public action history

Ht := (a1, a2, ..., at−1), and a private signal st. Then she can either

buy a version or walk away with nothing.

Payoff. The agent’s utility depends on her action at, the price schedule

p, and the value of the core technology V . u(at, p, V ) = V qi−pi if the agent

6Note that the observable qualities qH and qL are different from the unobservable
‘quality’/value of the core technology V . In a sense, the two versions are two vertically
differentiated products that share the same core technology. If we take iPhone as an
example, the basic version with qL = 1 will be iPhone 14, whereas the premium version
with qH = 2 will be iPhone 14 Pro. They share the same core technology, e.g., a smooth
operating system, but iPhone 14 Pro has some additional premium features, such as
a larger screen and a Pro camera system. Appendix B discusses whether qH = 2 is
without loss.
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buys one of the versions, at = i ∈ {L,H}. The utility from the outside

option is normalized to zero, u(r, p, V ) = 0.

A crucial assumption on the agent’s utility is that the marginal utility

of quality increases in the core technology’s value V . The assumption is

consistent with what we observe in many real-life situations. For example,

people gain additional utility from the premium features of the iPhone 14

Pro only if they value the core technology of iPhone. Likewise, in the

video game market, consumers would be interested in buying additional

game features and packages only when they value the core plots, graphics,

gameplay and characters in the original game.

The seller maximizes her long-run average profits

π(a, p) = lim
N→∞

1

N

N∑
t=1

[1(at = L)pL + 1(at = H)pH ]

where a := (a1, a2, ...) denotes the agents’ action profile.

The following analysis will focus on pure-strategy perfect Bayesian equi-

librium. For technical reasons I assume agents always buy the product or

choose a better version whenever they are indifferent.

Discussion. With the zero-one binary value assumption, my results only

pertain to situations where the value difference is large enough and/or the

outside option r gives a high enough payoff (see Appendix A). In addition,

the production cost is assumed to be zero for simplicity. Adding a non-

zero constant marginal cost will not have a substantial impact on the main

results. While the seller only designs the prices explicitly, the optimal

pricing strategy also reflects their versioning choice because the seller can

always abandon one of the versions by charging an average price pi
qi
, i ∈

{L,H}, higher than one.
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4 Optimal pricing with a single version

This section studies the optimal pricing problem when the monopolist sells

a single version. The analysis reveals a unique connection between private

signal quality, belief updating and the price/quantity effect. As a result of

the connection, the seller’s pricing incentive changes substantially when the

private signal becomes precise enough. This change in the seller’s objective

lays a foundation for discussion over the optimal versioning choice in the

next section.

4.1 Belief space

The evolution of posterior beliefs determines the agents’ optimal purchase

decisions over time and thus the seller’s optimal pricing policy. To facilitate

the following discussion, let me first characterize the belief space and intro-

duce an important state variable k, the difference between the numbers of

inferred good signals and inferred bad signals in the public action history.

Let µt be the public posterior belief at time t after history Ht, that is,

µt := Pr(V = 1|Ht). Agent t’s private belief is defined as θt := Pr(V =

1|Ht, st) because each agent also receives a private signal st.

As a result of a simple signal structure, the posterior belief depends

only on k, the difference between the numbers of good and bad signals

that we can infer from the previous action history Ht. More specifically,

the posterior belief takes values from a discrete set {Vk(γ)|k ∈ Z}, where

Vk(γ) := Pr(V = 1|k, γ) = γk

γk+(1−γ)k
.7 For instance, at k = 0, the posterior

belief equals the prior belief µ0 =
1
2
. Note also that k is not the difference

between the purchase and rejection numbers. Once we enter into an infor-

mational cascade, the purchase decisions carry no information about the

private signals. The variable k will stay the same forever but the difference

7To easy the notation I will omit γ and write Vk(γ) as Vk most of the time.
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between purchase and rejection numbers may still increase.

Vk(γ) has two important properties. First, it strictly increases in k.

Second, Vk(γ) − Vk−1(γ) increases in γ for all k ∈ Z. Intuitively, belief

updating speeds up as the signal becomes increasingly precise. Each update

leads to a large jump in the posterior belief.

4.2 The agent’s optimization problem and learning

patterns

It is easy to characterize the agent’s optimal choice as a cutoff strategy.

We will then analyze the evolution patterns of the public posterior belief

µt under different pricing strategies.

For any public action history Ht and private signal st, the expected

utility of agent t is8 E(u(at, p, V )|Ht, st) = θt − p if at = buy and zero

otherwise. The agent then adopts a cutoff strategy: they will buy the

product if and only if their private posterior belief over the core technology’s

value V exceeds the price p.

a∗t (p,Ht, st) =

r, 0 ≤ θt < p

buy, p ≤ θt ≤ 1

In this observational learning environment, {kt}t=1,2,... follows an asym-

metric random walk process with upward transition probability γ condi-

tional on state V = 1 and transition probability 1− γ conditional on state

V = 0.

To characterize the learning dynamics in the state space of k, let me

define k∗(p) := min{k ∈ Z|Vk ≥ p}. Then Vk∗ refers to the threshold

posterior belief above which an agent prefers to buy. Now the belief space

8Since the seller offers a single version, the price p is a scalar. The product’s observ-
able quality is normalized to one, q = 1.
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Vk
Learn

rejection buy
Vk∗

Figure 1: Short learning pattern with a single version.
Notes: ‘rejection’ refers to the rejection cascade set and ‘buy’ the buy cascade set.
‘Learn’ denotes the learning set and Vk∗ refers to the threshold belief above which an
agent prefers to buy the product.

can be divided into three sets (as illustrated in Figure 1):

1. rejection cascade set: {Vk|k < k∗ − 1}. If the public belief falls

into this set, every subsequent agent will rationally ignore their own

private signal and reject.

2. learning set: {Vk∗−1, Vk∗}. If the public belief drifts into this set, an

agent will buy the product after a good signal and reject after a bad

one.

3. buy cascade set: {Vk|k > k∗}. Here agents will buy the product

regardless of their private signals.

Below I provide a detailed example of the partition at price p = V1, or

equivalently, k∗ = 1, and the resulting dynamic learning process.

Example: learning pattern at price p = V1.

The learning process starts from the prior belief k0 = 0 = k∗ − 1, as

in Figure 2. If the first agent receives a good signal, her private belief will

change to θ1 = V1 and thus she will buy the product at the price p = V1.

Otherwise, with a bad signal and private belief at θ1 = V−1, she will reject.

The first agent’s action fully reveals her private signal. Conditional on the

state of the world V = 1 (V = 0), the public belief will jump to µ1 = V1

with probability γ (1 − γ) and µ1 = V−1 with probability 1 − γ (γ) at the

end of period t = 1.

The process continues until the public belief reaches a cascade set, i.e.

{Vk|k < 0} or {Vk|k > 1}. For instance, if the public belief hits V−1 at
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2
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V3
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Figure 2: The learning dynamics at price p = V1.
Notes: given the price p = V1 and the state of the world V , the difference between the
inferred good and bad private signals, kt, follows an asymmetric random walk process
with two absorbing points {1, 2}. They represent the boundaries of the rejection and buy
cascade sets. The vertical axis depicts the state space of kt with the associated posterior
belief on the left. The horizontal axis refers to time t. Since the first agent arrives in
the learning set, her action fully reveals the private signal. The public belief jumps up
to V1 after a buy decision and down to V−1 after a rejection.

the end of period t = 5 as in Figure 2, the next agent will reject regardless

of her private signal. All the subsequent agents face the same situation,

resulting in a rejection cascade.

To summarize, the learning set consists of two non-absorbing beliefs

{V0, V1}. {V−1, V2} are instead two absorbing beliefs. Conditional on the

state of the world, kt follows an asymmetric random walk process. The

associated public belief will bounce within the learning set until it finally

hits one of the two absorbing beliefs.

4.3 The seller’s optimal pricing strategy

Consider a case with finite time t ∈ {1, 2, ..., N} and define the finite time

expected average profit function as

E(
1

N

N∑
t=1

1(at = buy)p) =
E(

∑N
t=1 1(at = buy))

N
p
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Notice that the expression
∑N

t=1 1(at = buy) describes how many agents

have bought the product. Denote this purchase number by DN and the

ex-ante probability of having a buy cascade given price p by λ(p).

Claim 1. As the total number of agents N goes to infinity, the expected

proportion of agents who will buy the product, E(DN )
N

, approaches the ex-ante

probability of the public belief reaching the buy cascade set, i.e. λ(p).

The proof of Claim 1, along with all the other proofs, is included in the

Appendix. Intuitively, what happens in finite time does not matter because

the seller receives the long-run average profit and a cascade takes place with

probability one. The seller only cares about whether a buy cascade occurs

in the long run. Once it occurs, she will receive a payment p from every

subsequent agent. With Claim 1, the expected average profit is λ(p)p.

The next observation is that the optimal price can only take values

from the set {V−1, V0, V1}. First, it is never optimal to charge a price

higher than V1 that immediately induces a rejection cascade. No one will

buy the product at such a high price and the seller gets zero profit. But

the seller can always achieve a strictly positive expected profit by lowering

the price because the production cost is zero. Second, any price strictly

lower than V−1 is sub-optimal. At a price p = V−1, we already trigger a buy

cascade right from the beginning. There is no point in further decreasing

the price. Finally, given the tie-breaking rule, the seller will not choose any

prices between the belief points9.

Proposition 1. There exists a pair of threshold signal qualities {γ, γ̄},
1
2
< γ < γ̄ < 1.

1. With a noisy signal, γ ∈ (1
2
, γ), it is optimal to offer a cheap price

such that everyone buys the product p∗(γ) = V−1;

9For instance, any price p ∈ (V−1, V0] leads to the same purchase behaviors of the
agents. Charging a price p = V0 dominates any other prices within the interval (V−1, V0].
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2. As the private signal becomes increasingly precise, the optimal price

becomes higher and it takes harder and longer to arrive at a buy

cascade. p∗(γ) = V0 for γ ∈ (γ, γ̄]; p∗(γ) = V1 for γ ∈ (γ̄, 1].

Similar to the standard monopoly pricing problem, the seller’s expected

average profit consists of two parts: the ex-ante probability of having a

buy cascade λ(p) and the price p, taking values from {V−1, V0, V1}. A price

increase leads to a lower buy cascade probability (‘quantity’ effect) and a

higher margin (price effect). To understand the result, we can explore two

extreme cases: when the private signal is very noisy γ ∈ (1
2
, γ) and when

the private signal is very precise γ ∈ (γ̄, 1).

With a noisy signal, γ ∈ (1
2
, γ), is it profitable to increase the price from

p∗ = V−1 to V0? Now the posterior belief updates slowly. Agents are still

quite uncertain about state V even after receiving a good signal. Conse-

quently, the increase in margin (V0 − V−1) is fairly small, which implies a

weak price effect (Figure 3a). By contrast, the quantity effect is relatively

strong: the price increase causes a discrete drop in the buy cascade proba-

bility. At a price p = V−1, a buy cascade occurs from the start. By lifting

the price to V0, the seller risks a rejection cascade. As we can see from

Figure 3b, the buy cascade probability drops from one to some value below

0.65. Hence, the cost of the price increase far outweighs its benefit. It is

optimal to stay with the low price that triggers a buy cascade immediately.

On the other hand, the price effect dominates the quantity effect when

the private signal becomes extremely precise, γ ∈ (γ̄, 1]. Imagine the seller

considers a price increase from p = V0 to p = V1. The posterior belief

updates very fast, leading to a large increase in margin (V1 − V0). In

contrast, the quantity effect weakens at a large γ. With a precise signal,

the learning process quickly enters into the correct cascade as long as we

start from within the learning set. Both buy cascade probabilities at price

p = V0 and p = V1 will be fairly close to the prior belief 1
2
(Figure 3b).
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(a) Three candidate prices. (b) The buy cascade probabilities.

Figure 3: The prices and buy cascade probabilities as signal quality varies.

Choosing the higher price p = V1 only results in a small drop in the buy

cascade probability λ. As a result, the seller finds it optimal to charge the

highest possible price that does not trigger a rejection cascade immediately.

U-shaped profit. Figure 4 plots the seller’s average profit as a function of

the signal quality γ under different pricing strategies. The maximal profit

function is U-shaped: the seller is better off when consumers have nearly

no information or full information.

5 When to offer multiple versions

Offering both a premium version and a cheaper basic version forces the

seller to concede information rents to high-belief consumers. Nevertheless,

a separate basic version may help relax a binding constraint in the seller’s

problem, leading to a higher profit. This trade-off is the key to under-

standing the mechanism through which signal quality affects the seller’s

versioning policy.
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Figure 4: The seller’s expected profit in the single-version model.

5.1 An extended learning set for agents

Selling two versions with different observable qualities enlarges the choice

set of the agents. It is possible now to induce a longer learning set that

incorporates three or more belief points. The extended learning set allows

the seller to offer a more expensive premium version without triggering a

rejection cascade immediately.

Given any prices p = (pL, pH), the expected payoff of agent t becomes

E(u(at, p, V )|Ht, st) =


θt − pL, at = L

2θt − pH , at = H

0, at = r

If the average price of the basic version is higher than that of the premium

version, pH
qH

≤ pL, the basic version becomes so expensive that no one would

ever consider it. Agents behave exactly the same as in the single-version

model. If the average price of the basic version is lower than that of the

premium version, pL < pH
qH

≤ 1, agents will possibly choose each of the

17
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three actions during the process.

a∗t (Ht, st, p) =


r, 0 ≤ θt < pL

L, pL ≤ θt ≤ pH − pL

H, pH − pL ≤ θt ≤ 1

The additional version choice leads to a richer observable action set.

It allows agent t to convey more private information to the subsequent

agents. Thus, we have a longer learning set where the public belief may

exhibit more variations over time before it arrives at a cascade.

If pL ≤ 1 < pH
qH

, the agents only consider the basic version. As the

marginal production cost is zero, the total surplus from selling the premium

version is greater than that from the basic version at any posterior belief

θt. Giving up the premium version is, therefore, sub-optimal for the seller.

From now on, the discussion will center around which type of learning

patterns can occur when the seller introduces a cheaper basic version pL <

pH
qH

≤ 1. Let me define

kL(pL) := min{k ∈ Z|Vk ≥ pL},

kH(pH , pL) := min{k ∈ Z|Vk ≥ pH − pL}.

Then VkL represents the threshold posterior belief above which an agent

prefers the basic version over rejection, and VkH the threshold belief above

which an agent prefers the premium version over the basic version. Analo-

gous to the benchmark model, we can divide the belief space into (at most)

five sections.

1. rejection cascade set: {Vk|k < kL − 1}.

2. learning set for basic version: {VkL−1, VkL}.
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3. buy cascade set for basic version: {Vk|kL < k < kH − 1}.

4. learning set for premium version: {VkH−1, VkH}. An agent who arrives

with a public belief in this set will buy the premium version after a

good signal and the basic version otherwise.

5. buy cascade set for premium version: {Vk|k > kH}.

The learning patterns vary with the distance between the two threshold

beliefs (Figure 5). If the two thresholds are far apart (kL < kH − 2), we

observe all of the five sets in the belief space (Figure 5a). In between the

two learning sets, there is a basic cascade set with absorbing beliefs. If

the two thresholds are close just enough (kL = kH − 2, Figure 5b), we will

have two consecutive learning sets, which together create a big learning

set. Figure 6 provides an example of the dynamic learning path in this

case with kL = 0, kH = 2, or equivalently pL = V0, pH = V0 + V2. As the

two thresholds get even closer (kH − 2 < kL < kH , Figure 5c-5d), the two

learning sets may partly or completely overlap.

5.2 The optimal selling strategy

This part explores when and why the monopolist finds it optimal to offer

two separate versions rather than a single version. As the production cost

is zero, she always keeps a premium version in the market. To sell both

versions, she must offer the basic version at a cheaper price per quality.

Otherwise, the agents will never choose the basic version on the equilibrium

path. The versioning problem then boils down to whether to introduce a

cheaper basic version.

In the limit, the proportion of agents who have purchased a certain ver-

sion approaches the probability of a buy cascade for that version. We sim-

plify the expected profit to10 Pr(premium cascade|p)pH+Pr(basic cascade|p)pL.
10Details in Appendix F.
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LearnL

basic

LearnH

rejection premium

VkL VkH

(a) kL < kH − 2

LearnL LearnH

rejection premium

VkL VkH

(b) kL = kH − 2

LearnL LearnH

rejection premium

VkL VkH

(c) kL = kH − 1

LearnL =LearnH

rejection premium

VkL = VkH

(d) kL = kH

Figure 5: Characterizing learning patterns in belief space {Vk}k∈Z.
Notes: ‘rejection’ refers to the rejection cascade set, ‘basic’ the buy cascade set for the
basic version, and ‘premium’ the buy cascade set for the premium version. ‘LearnL’
represents the learning set for the basic version: when the public belief arrives at this
set, the agent will choose between the basic version and rejection according to her private
signal. VkL

(pL) is the threshold belief above which an agent prefers the basic version over
rejection. Similarly, ‘LearnH ’ denotes the learning set for the premium version, and
VkL

(pH , pL) refers to the threshold belief above which an agent prefers the premium
version over the basic version.
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t

kt

0

LearnH

LearnL

rejection

premium

1
2
= V0

V1

V2

V3

V−1

V−2

1

2 3 4 5 6

Figure 6: Dynamics of long learning pattern, pL = V0, pH = V0 + V2.
Notes: given the prices pL = V0, pH = V0 + V2 and the state V , the difference between
the inferred good and bad private signals, kt, follows an asymmetric random walk process
with two absorbing states {−2, 3}. The absorbing states represent the boundaries of the
rejection and premium cascade sets. The vertical axis depicts the state space of kt with
the associated posterior belief on the left. The horizontal axis refers to time t. There is
an extended learning phase for agents where they can possibly infer more information
from different version choices.

Additionally, as we study in the previous section, the pricing choice will be

equivalent to the choice of threshold beliefs kL and kH , which in turn de-

termine the learning patterns and, within each learning pattern, the point

at which to start the process.

As a first step to solve for the optimal prices, we can rule out several

sub-optimal learning patterns and starting points. For each remaining com-

bination, I derive the resulting expected profits as polynomial functions of

signal quality γ. Comparing the polynomial functions gives us the optimal

selling strategy for each signal quality.

Proposition 2 (Versioning). There exists a threshold signal quality γv ∈

(0, 1) such that it is optimal to offer two versions if and only if γ > γv.

Proposition 2 tells us with a noisy private signal, the monopolist will

offer an expensive basic version that nobody will ever buy, leading to a de

facto single-version market. Otherwise, a multi-version policy that features

21



both an expensive premium version and a cheap basic version is optimal.

Here the key question is: Why does the seller introduce a cheap basic

version only when the private signal is precise?

On the cost side, a cheaper basic version makes the seller concede in-

formation rents to buyers of the premium version. If the price pH leaves no

surplus to them, the premium version buyers will deviate and obtain a pos-

itive payoff by purchasing the basic version instead. θt − pL
qL

> θt − pH
qH

= 0.

While the cost of introducing a cheaper basic version always exists, its

benefit occurs only when the private signal is precise enough. Let’s discuss

the precise signal case first. A precise signal brings a strong price effect and

a weak quantity effect. The seller tends to choose the highest possible price

subject to a binding constraint: that the price does not induce a rejection

cascade immediately. Introducing a cheaper basic version can extend the

learning set towards lower beliefs (see Figure 5b), which relaxes this no-

immediate-rejection constraint. The seller can thus charge an even higher

price for the premium version.

In contrast, with a noisy signal, the seller prefers a safe choice. If the

seller were selling a single premium version, the optimal price would be

cheap enough that the process starts fairly close to a premium cascade. At

such a low price, the no-immediate-rejection constraint does not bind, and

thus it is not profitable to introduce a cheaper basic version. Intuitively,

there’s no point in providing a cheaper version if the seller already offers a

premium version at affordable prices.

Learning dynamics. With a noisy signal (γ < γv), we have a single-

version market, and the process features a short learning pattern (Figure

1). As in the benchmark, it is optimal to charge an all-buy price pH
qH

= V−1

if the private signal is extremely noisy.

Proposition 3 (Learning dynamics). In the precise signal case where a
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Figure 7: Longer learning pattern leading to lower price elasticity.
Notes: each black square/red circle represents a pair of price and the premium cascade
probability (pH , λH) that can be attained by starting at different positions in the short
learning pattern (1)/long learning pattern (5b), given a certain signal quality γ. Lines
with stronger colors imply the private signal is more precise.

multi-version policy is optimal, γ > γv, the process features a long learning

pattern (5b) with two consecutive learning sets. The optimal prices of the

two versions are just close enough to preclude a basic cascade between the

two learning sets.

The whole point of adding a cheaper basic version is to relax the no-

immediate-rejection constraint and further increase the price of the pre-

mium version. The longer the combined learning set is, the more expensive

the premium version can be. Also, having a basic cascade in between is

sub-optimal because that only breaks down a long learning set into two

short ones. Hence, it is optimal to choose pattern 5b. As the tie-breaking

rule favors a high-quality version, the two threshold beliefs are two signals

away from each other (see Table 1).

Figure 7 depicts long-run demand curves that demonstrate the change

in the seller’s objective and why versioning helps only in the precise signal
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Figure 8: The seller’s expected profits in the two-version model.

case. Strong colors correspond to precise signals. Compared to the demand

at a noisy signal γ = 0.6, the demand curves at a precise signal γ = 0.9

are less elastic. Hence, a more precise signal predicts an optimal price-

probability pair near the top left corner. As we can see, the top left is

exactly where the long learning pattern (red line) dominates the short one

(black line), which creates the versioning incentive.

Other testable implications. Table 1 provides further details of the op-

timal pricing strategy and characteristics of the equilibrium learning pro-

cess. As the private signal becomes more precise, the process starts from a

position closer to the rejection cascade set. The probability of a premium

cascade, however, is non-monotone in the signal quality.

In addition, whenever the seller offers two versions, she adopts a convex

pricing strategy. She charges a higher price for the second ‘unit’ of quality

(pH − pL > pL) because she expects the premium version buyers to have a

higher posterior belief and, thus, a higher marginal utility of quality.

Figure 8 plots the seller’s expected profit as a function of signal quality.
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Again, the optimal expected profit is U-shaped in signal quality γ.

γ Optimal pricing Steps to rej Steps to premium P (premium)
(1
2
, γs) p∗H = 2V−1 3 0 1

(γs,γv) p∗H = 2V0 2 1 [0.626, 0.638]
(γv,γm) p∗L = V0, p

∗
H = V0 + V2 2 3 [0.445, 0.479]

(γm,1) p∗L = V1, p
∗
H = V1 + V3 1 4 [0.388, 0.5]

Table 1: The properties of different equilibria as signal quality γ increases.
Notes: The thresholds γs < γv < γm are defined in the proof F.2.2. Steps to
rej/premium refers to the distance between the initial position of {kt} and the re-
jection/premium cascade set in belief space. ‘Steps to rej = 3’ means we are three
consecutive bad signals away from the rejection cascade. ‘Steps to premium = 3’ means
we are three consecutive good signals away from the premium cascade. P (premium)
is the probability of reaching a premium cascade set. The premium cascade probability
usually jumps at the thresholds. So it is not monotone in γ. But the general trend of
P (premium) decreases until around the prior belief 0.5.

6 Discussion: market efficiency in aggregat-

ing information

Does the opportunity to offer multiple versions give a boost to market

efficiency in information aggregation? This section introduces a measure

to compare the learning efficiency outcomes in the single-version and multi-

version model: the conditional premium cascade probability Pr(premium cascade|V ).

Information aggregates more efficiently if the probability of having a pre-

mium cascade is higher in the good state V = 1 and lower in the bad state

V = 0.

It turns out the multi-version option improves information aggregation

efficiency in the bad state but not always in the good state (Figure 9).

Indeed, the seller offers multiple versions only when she aims at a high

margin and starts the process far away from the buy cascade sets. In the

single-version model, the optimal pricing strategy induces a learning pro-

cess starting, at most, two consecutive good signals away from the premium

cascade. In the multi-version model, however, the learning process can pos-
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(a) Single-version: good state (b) Multi-version: good state

(c) Single-version: bad state (d) Multi-version: bad state

Figure 9: The premium cascade probability conditional on the state.
Notes: (1) The red solid curves in Figure (9a) and (9b) plot the conditional probability
of the premium cascade given the core product is good (V = 1). The blue solid curves
in Figure (9c) and (9d) plot the conditional probability of the premium cascade given
the core product is bad (V = 0). In the multi-version figures (9b) and (9d) I also add
the conditional premium cascade probability in the single version model as dotted curves
in order to compare the information aggregation efficiency in different models. (2) The
outcomes in the single and multi-version models differ only in the shaded areas. Light
grey areas represent the signal quality interval where the multi-version option leads to
an efficiency improvement. Dark grey areas represent the signal quality interval where
the multi-version option results in an efficiency loss. (3) The three vertical lines denote
thresholds γ2 (where the seller switches to a multi-version policy with prices pL = V0

and pH = V0 + V2 in the multi-version model), γ̄ (where the seller starts to set the
highest price p = V1 in the single version model) and γ3 (where the seller adopts the
most expensive pricing scheme in the multi-version model, pL = V1 and pH = V1 + V3)
accordingly.
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sibly start three to four consecutive good signals away from the premium

cascade. Thus, the multi-version option generally reduces the premium

cascade probability in both states.

Figure 9c and 9d show, conditional on the bad state, the premium

cascade probability is smaller in the multi-version model. Hence, the multi-

version option improves the market efficiency in ruling out bad projects.

Meanwhile, according to Figure 9a and 9b, the premium cascade probability

conditioning on the good state also decreases most of the time. The market

is generally less capable of selecting good projects in the multi-version

model. The only exception is the light grey area in the middle.11

7 Concluding remarks

This paper investigates a monopolist’s optimal (fixed) pricing and version-

ing policy in a market with observational learning. A unique insight of the

paper is that private signal quality can affect the price elasticity of long-

run demand. As a result, the optimal selling strategy becomes qualitatively

different as the signal quality changes. In a market with noisy private in-

formation, the seller will offer a single cheap premium version. When the

agents arrive with precise private information, it is optimal to launch two

different versions: a basic version and a more expensive premium version.

In this case, versioning is profitable because it extends the learning set and

relaxes a key constraint of the seller’s problem.

In addition, the model predicts a U-shaped optimal profit function in

both the single-version and multi-version case. The seller is better off when

the agents arrive with either almost zero or full information. A medium

11In this area, the single-version seller already switches to an extreme (expensive)
pricing scheme. It is so risky that just a single bad signal can trigger a rejection cas-
cade. The multi-version seller offers a relatively cheap basic version and only with two
consecutive bad signals can we trigger a rejection cascade.
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degree of informativeness makes her worse off. A related paper by Arieli

et al. (2021) analyzes how to optimally design the consumers’ information

structure in an observational learning setup. (Sgroi, 2002; Gill and Sgroi,

2008, 2012) instead examines optimal pre-launch information disclosure in

this environment. It will be worth exploring how information provision

affects the optimal versioning policy in the future.
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A Value difference and outside option

As a main result of the paper, the optimal price and the optimal number

of versions increases in signal precision. This result may fail when 1) the

value difference is small enough compared to the low value or 2) consumers

receive a low payoff from not buying.

To see the intuition, consider an extreme case where each agent receives

a nearly perfect signal, i.e., γ → 1. Now the buy cascade probabilities are

fairly close to the prior probability 1
2
as long as we start within the learning

set. Suppose the binary value is either 11 or 10. Pricing at the low value

p = 10 strictly dominates any prices that do not trigger a buy cascade

immediately. In the former case, everyone will buy and the expected profit

is 10 while in the latter case, the expected profit is smaller than 1
2
∗11 < 10.

Hence, the seller will choose a low all-buy price even if the private signal

is precise. Furthermore, she has no incentive to offer two versions because

the constraint of not starting with a rejection cascade never binds.

More generally, let the binary value be Vh with prior probability µ0

and Vl with probability (1 − µ0) (Vh > Vl > 0). Each agent receives a

payoff R from not buying. The seller chooses a price p for a single product

with exogenous observable quality q. In this setting, a consumer with

private belief θ ∈ [0, 1] will buy the product if and only if θ ≥ R+p−qVl

(Vh−Vl)q
.

At price p = qVl − R, everyone buys the product. Choosing such a low

price guarantees the seller an expected profit of π := qVl − R. Meanwhile,

an optimal price must be smaller than p = qVh − R because at this price

only agents with private belief θ = 1 will buy. It follows that the highest

possible expected profit typically will not exceed π̄ := µ0(qVh − R) when

the private signal is almost perfect. Hence, as γ → 1, the seller prefers the

all-buy price if π̄ < π ⇔ q(µ0(Vh − Vl)− (1− µ0)Vl) + (1− µ0)R < 0.
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B Optimal quality choice

For analytical convenience, the premium quality is assumed to be 2. In fact,

the seller always prefers to maximize the quality difference (qH−qL) within

reasonable limits, given the quasi-linear payoff structure of the agents and

zero marginal cost assumption.

More precisely, suppose the seller can choose two qualities as she likes,

that is, qL, qH ∈ [q, q̄] ⊂ (0,∞) with qL < qH . The learning process has

two possible structures. In the first case, the process ends either with a

rejection cascade or with a basic cascade, i.e. a buy cascade for the basic

version, with probability one. Since qL < qH and agents only care about

the average price, it is always more profitable for the seller to sell a single

premium version with qH = q̄. In the second case, the learning process ends

either with a rejection cascade or with a premium cascade with probability

one. Now increasing the quality difference reduces the information rents

conceded to the premium version buyers. Hence, the seller will find it

optimal to choose qH = q̄ and qL = q.

C Proof of Claim 1

kt
learnrejection

k∗ − 2

0Relabeled:
buy

k∗ + 1

3

k∗ − 1

1

k∗

2

Figure 10: The learning pattern in the single version model

Figure 10 presents the learning pattern in the state space of the dif-

ference {kt}t∈{1,2,3,...}. To ease notation, I relabel the relevant states as

{0, 1, 2, 3}. The two absorbing states are 0, the highest state within the

rejection cascade set, and 3, the lowest state within the buy cascade set.

To prove Claim 1 I need to show that in the limit the expected average
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purchase numbers 1
N
E(DN) approaches the probability of kt reaching the

absorbing state 3 in Figure 10 before arriving at state 0.

Let τj := inf{t ≥ 1|kt = j},∀j ∈ Z be the first time the process {kt}

visits j. Then τ := min(τ0, τ3) will be the first time the process hits an

absorbing state. No matter where we start, the expected time spent on

the non-absorbing states {1, 2} is finite, that is, E(τ) < ∞. Our goal is to

prove

lim
N→∞

E(DN)

N
= Pr(τ3 < τ1).

Fix a positive integer N and the number of agents who buy the product

will be

DN
H =

N∑
t=1

[1(kt−1 = 1, kt = 2, τ ≥ t) + 1(kt−1 = 2, kt = 3, τ ≥ t)] (1)

+
N∑
t=1

1(τ3 < t, τ3 < τ0) (2)

The first row counts the number of times when kt goes upwards before

the process hits an absorbing state. By definition,
∑N

t=1[1(kt−1 = 1, kt =

2, τ ≥ t)+1(kt−1 = 2, kt = 3, τ ≥ t)] ≤ τ . As a result, limN→∞
1
N
E(

∑N
t=1[1(kt−1 =

1, kt = 2, τ ≥ t)+1(kt−1 = 2, kt = 3, τ ≥ t)]) ≤ limN→∞
E(τ)
N

= 0, no matter

where the process starts.

The second row (2) counts the number of periods after the process first

hits the absorbing state 3 in the premium cascade set.

E[
N∑
t=1

1(τ3 < t, τ3 < τ0)] =
N∑
t=1

Pr(τ3 = t, τ3 < τ0)(N − t)

= N
N∑
t=1

Pr(τ3 = t, τ3 < τ0)−
N∑
t=1

Pr(τ3 = t, τ3 < τ0)t
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Hence,

lim
N→∞

1

N
E[

N∑
t=1

1(τ3 < t)] =
∞∑
t=1

Pr(τ3 = t, τ3 < τ0)− lim
N→∞

1

N

N∑
t=1

Pr(τ3 = t, τ3 < τ0)t

= Pr(τ3 < τ0)− lim
N→∞

1

N

N∑
t=1

Pr(τ3 = t, τ3 < τ0)t.

For any positive integer N , the event {τ3 = t, τ3 < τ0} ⊂ {τ = t}, ∀t ∈

{1, 2, ..., N}. Therefore, Pr(τ3 = t, τ3 < τ0) ≤ Pr(τ = t),∀t ∈ {1, 2, ..., N}.

It follows that
∑N

t=1 Pr(τ3 = t, τ3 < τ0)t ≤
∑N

t=1 Pr(τ = t)t, ∀N ∈ N+.

lim
N→∞

N∑
t=1

Pr(τ3 = t, τ3 < τ0)t ≤ lim
N→∞

N∑
t=1

Pr(τ = t)t =
∞∑
t=1

Pr(τ = t)t = E(τ) < ∞

Consequently, limN→∞
1
N

∑N
t=1 P (τ3 = t, τ3 < τ0)t = 0. Thus, we have

proved that limN→∞
E(DN )

N
= Pr(τ3 < τ0) in the single version model.

D Monotonicity of the buy cascade proba-

bility λ

Let me first introduce a few notations in order to derive the buy cascade

probability. Conditional on the state of the world V , {kt} follows an asym-

metric random walk with upward transition probability Pr(kt+1 = j+1|kt =

j, V ) = Pr(st = g|V ) ∈ {γ, 1−γ} and two absorbing states. A typical state

space for kt looks like Figure 10. Let {0, 1, 2, ..., l} be the state space with

two absorbing states 0 and l. Then we can write the buy cascade prob-

ability as λV
i,l := Pr(τl < τ0|V, k0 = i) where V is the true state and i

the starting position. Using the techniques from the classical Gambler’s

Ruin example, we can derive the following analytical expressions for λV
i,l:

∀i ∈ {0, 1, 2, ..., l}, λ1
i,l =

( 1−γ
γ

)i−1

( 1−γ
γ

)l−1
and λ0

i,l =
( γ
1−γ

)i−1

( γ
1−γ

)l−1
.

So, the ex-ante probability of having a buy cascade will take values from
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{λi,l} with λi,l := Pr(V = 1)Pr(τl < τ0|V = 1)+Pr(V = 0)Pr(τl < τ0|V =

0) = 1
2
(λ1

i,l + λ0
i,l). Let me further define x := γ

1−γ
, ∀γ ∈ (0.5, 1). There is

a one-to-one mapping between x and γ. Since γ ∈ (1
2
, 1), x can take any

value from 1 to infinity. For convenience, I will write λi,l as a function of x

in the following analysis, λi,l =
(xi−1)(xl−i+1)

2(xl−1)
, ∀i ∈ {0, 1, ..., l}.

Note that
dλi,l

dx
= ix2l−i−1+(l−i)xl−i−1−(l−i)xl+i−1−ixi−1

2(xl−1)2
> 0. The denomina-

tor is obviously positive. Thus it suffices to check the numerator. Denote

the numerator by f(x) := ix2l−i−1 + (l − i)xl−i−1 − (l − i)xl+i−1 − ixi−1.

Suppose l < 2i. I would like to prove f(x) < 0,∀x > 1. l < 2i

implies l − i − 1 < i − 1 and l − i − 1 < 2l − i − 1 < l + i − 1. So we

can write f(x) = xl−i−1(ixl + (l − i) − (l − i)x2i − ix2i−1). Let f2(x) :=

ixl + (l − i) − (l − i)x2i − ix2i−1 denote the part in the bracket. Because

x > 1, it suffices to check the sign of f2(x). Note also f2(1) = 0 and

f ′
2(x) = x2i−l−1[ilx2l−2i − (l − i)2ixl − i(2i − l)]. For similar reasons, we

can look at the sign of whatever is included in the square bracket: f3(x) :=

ilx2l−2i − (l − i)2ixl − i(2i − l). Again we have f3(1) = 0 and f ′
3(x) =

x2l−2i−1[2il(l − i) − (l − i)2ilx2i−l]. Since x ≥ 1 and 2i − l ≥ 0, we have

f ′
3(x) ≤ 0,∀x ≥ 1 (strictly if x > 1). Therefore, f3(x) ≤ 0 for all x ≥ 1.

Then by going backward, it is easy to see f(x) < 0,∀x > 1.

When l > 2i, we can prove f(x) > 0,∀x > 1 in a similar way. If l = 2i

instead, l − i− 1 = i− 1 and 2l − i− 1 = l + i− 1. So f(x) = 0.

Note also that x is strictly increasing in γ. Hence, λi,l strictly increases

in γ if l > 2i; strictly decreases in γ if l < 2i. In the special case when

l = 2i, λi,l =
1
2
,∀γ ∈ (1

2
, 1).

E Proof of Proposition 1

Let me denote the seller’s expected average profit by π̃ := λ(p)p. The dis-

cussion in the main text has narrowed down the candidates for the optimal
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average prices to three: V−1, V0, V1. We can then write the corresponding

payoffs as follows:

π̃(p, γ) =


(1− γ) , pH = V−1

1
2
λ2,3(γ) , pH = V0

γλ1,3(γ) , pH = V1

From Appendix D we know π̃(V1, γ) increases in γ whereas π̃(V0, γ)

and π̃(V−1, γ) decrease in γ. Next I’ll prove that π̃(V−1, γ) intersects with

π̃(V0, γ) only once from above. Then by checking some key values of the

functions we can show that, as the signal quality improves, the optimal

price goes up, from p = V−1, V0, to V1 as in Figure 4.

π̃(V−1,γ)
π̃(V0,γ)

= 4(1−2γ+2γ2−γ3). So π̃(V−1,γ)
π̃(V0,γ)

> 1 ⇐⇒ 4γ3+8γ2−8γ−3 < 0.

Let m(γ) := 4γ3 + 8γ2 − 8γ − 3. By checking m(0),m(1) and m′(γ), we

know m(γ) switches its sign only once on (0.5, 1). This implies π̃(V−1, γ)

and π̃(V0, γ) intersect only once on γ ∈ (0.5, 1).

Let γ be the solution to the equation π̃(V−1, γ) = π̃(V0, γ) and γ̄ the

solution to π̃(V0, γ) = π̃(V1, γ). It is easy to show that γ ∈ (0.65, 0.7) and

γ̄ ∈ (0.75, 0.8) by checking the numerical values of the profit functions at

γ = 0.65, 0.7, 0.75 and 0.8. Hence, within the interval (0.5, 1), π̃(V−1, γ) >

π̃(V0, γ) if and only if γ > γ and π̃(V0, γ) > π̃(V1, γ) if and only if γ > γ̄.

It pins down the order of the optimal prices.

F Multi-version: solving the seller’s prob-

lem

LetDN
H denote the purchase number of the premium version andDN

L denote

the purchase number of the basic version when the total number of agents
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is N . Then we can write the seller’s optimization problem as:

max
pL,pH

E( lim
N→∞

1

N
(DN

L pL +DN
HpH)) s.t. pL ̸= pH

2
,
pH
2

≤ 1

F.1 Simplifying the seller’s problem

As I briefly discussed in section 5.2, the seller’s pricing choice is equiva-

lent to choosing a learning pattern12, and within each pattern, a starting

position. Let me first derive the seller’s expected payoff as a function of

the prices p = (pH , pL) and γ. Then I will rule out some combinations of

learning patterns and starting positions by simple arguments and algebra

before I discuss more complicated cases in Appendix F.2.

Fix a positive integer N and let πN :=
E(DN

L )

N
pL +

E(DN
H )

N
pH . If pL >

pH
2

(Figure 11a), we are back to the single-version model. As Appendix

C shows, limN→∞
E(DN

L )

N
= 0; limN→∞

E(DN
H )

N
equals the premium cascade

probability. This choice obviously outperforms the pattern 11e.

When pL < pH
2

we can derive the limit of πN by similar arguments as

in Appendix C. The core argument rests upon a result from probability

theory: the expected time a simple random walk process spends on the

non-absorbing states in between two absorbing states is finite. As a re-

sult, the seller’s limit expected profit will be π̃(p, γ) := limN→∞ πN(p, γ) =

Pr(premium cascade|p, γ)pH(γ) + Pr(premium cascade|p, γ)pL(γ).

The following paragraphs help us rule out several suboptimal cases.

First, starting from a rejection cascade set is never optimal. Starting from

a state in the premium cascade set, or equivalently, choosing pH−pL ≤ V−1

in pattern 11b - 11d, is not optimal either. These patterns occur only when

pL < pH
2
, which implies pL < pH − pL ≤ V−1. Hence, pH < 2V−1. Note also

π̃(p, γ) = pH if we start with a premium cascade. It follows that starting

from the premium cascade set here in pattern 11b - 11d is dominated by

12I have collected all the possible patterns in Figure 11 for convenience.

37



Vk
Learn

rejection buy
Vk∗

(a) Short learning pattern: pL > pH
2

LearnL

basic

LearnH

rejection premium

VkL VkH

(b) pL < pH
2 ≤ 1, kH − 2 < kL

LearnL LearnH

rejection premium

VkL VkH

(c) pL < pH
2 ≤ 1, kL = kH − 2

LearnL LearnH

rejection premium

VkL VkH

(d) pL < pH
2 ≤ 1, kL = kH − 1

LearnL =LearnH

rejection premium

VkL = VkH

(e) pL < pH
2 ≤ 1, kL = kH

Figure 11: Characterizing learning patterns in belief space {Vk}k∈Z.
Note: ‘rejection’ refers to the rejection cascade set, ‘basic’ the buy cascade set for the
basic version, and ‘premium’ the buy cascade set for the premium version. In the short
learning pattern 11a, ‘LearnH ’ represents the learning set for the premium version as
defined in the single version model: the agent chooses to buy the premium version only
after a good signal. VkH

(pH) refers to the threshold posterior above which an agent
prefers the premium version over rejection. Similarly, in patterns 11b - 11e,‘LearnL’
represents the learning set for basic version. VkL

(pL) is the threshold belief above which
an agent prefers the basic version over rejection. ‘LearnH ’ denotes the learning set for
the premium version and VkL

(pH − pL) the threshold belief above which an agent prefers
the premium version over the basic version.
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starting from the premium cascade set in the short learning pattern 11a

which gives a payoff of 2V−1. Moreover, starting from the basic cascade

set in pattern 11b gives an even lower payoff to the seller and thus is

suboptimal.

Third, the seller will not choose to start from within the basic learning

set in pattern 11b. If we start there, the whole learning process resembles

the short learning pattern 11a. In both cases, agents consider only one

version along the way: the basic version in the former; the premium version

in the latter. Selling the premium version is obviously more profitable.

The remaining choices for the seller are summarized in Table 2. 13

Case # Prices Starting position Expected payoff
a1 pH = 2V1, pL > V1

a1 a2

LearnHrej

a3

pre

π̃a1 := 2λ1,3V1

a2 pH = 2V0, pL > V0 π̃a2 := 2λ2,3V0

a3 pH = 2V−1, pL > V−1 π̃a3 := 2V−1

b1 pL = V−2, pH = V1 + V−2

LearnL bas

b1 b2

LearnHrej pre

π̃b1 := λ1,3V1 + V−2

b2 pL = V−3, pH = V0 + V−3 π̃b2 := λ2,3V0 + V−3

c1 pL = V1, pH = V1 + V3

c1 c2

LearnL

c3 c4

LearnHrej pre

π̃c1 := λ1,5(V1 + V3)
c2 pL = V0, pH = V0 + V2 π̃c2 := λ2,5(V0 + V2)
c3 pL = V−1, pH = V−1 + V1 π̃c3 := λ3,5(V−1 + V1)
c4 pL = V−2, pH = V−2 + V0 π̃c4 := λ4,5(V−2 + V0)
d1 pL = V1, pH = V1 + V2

d1

LearnL

d2 d3

LearnHrej pre

π̃d1 := λ1,4(V1 + V2)
d2 pL = V0, pH = V0 + V1 π̃d2 := λ2,4(V0 + V1)
d3 pL = V−1, pH = V−1 + V0 π̃d3 := λ3,4(V−1 + V0)

Table 2: The seller’s remaining choices and their payoffs.
Note: in the starting position column, I plot the state space of kt. The big points with
the case number below refer to the starting position of the process for each case. ‘rej’
stands for the rejection cascade set, ‘bas’ the buy cascade set for basic version, ‘pre’ the
buy cascade set for the premium version, ‘LearnL’ the learning set for the basic version,
and ‘LearnH ’ the learning set for the premium version.

13Both the premium cascade probability λi,l and the posterior belief Vk are functions
of γ. In addition, in the remaining choices, the probability of having a basic cascade is
always zero.
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F.2 Proof of Proposition 2 and 3

I copy some notations from Appendix D here. x = γ
1−γ

and λi,l =
(xi−1)(xl−i+1)

2(xl−1)
,

∀i ∈ {0, 1, ..., l}. I want to prove the optimal choice will be case a3, a2, c2

and c1 in Table 2 as the signal quality improves. Here is a road map of the

proof:

1. I will rule out four cases b1, b2, d3 and c3 because each of them is

outperformed by a linear combination of some other cases;

2. None of the choices from {d1, d2, a1, c4} are optimal. I will show

that at any signal quality γ their payoffs are lower than the maximum

of two optimal payoffs from {a3, a2, c2, c1};

3. I prove that the order of the optimal cases in Table 1 is correct.

Case b1: First, I want to show π̃b1 ≤ 1
2
(π̃a1 + π̃a3), which implies π̃b1 ≤

max{π̃a1, π̃a3} and thus b1 is never optimal. Since Vk increases in k, 1
2
(π̃a1+

π̃a3) = λ1,3V1 + V−1 ≥ λ1,3V1 + V−2 = π̃b1.

Case b2: Similarly, b2 is also suboptimal because π̃b2 = λ2,3V0 + V−3 ≤

λ2,3V0 + V−1 =
1
2
(π̃a2 + π̃a3).

Case d3: I am going to prove that d3 is not optimal because π̃d3 ≤

απ̃a2+(1−α)π̃a3 for some α ∈ (0, 1). Note that π̃d3 =
1−γ(1−γ)

2(1−2γ(1−γ))
(V0+V−1),

π̃a2 =
1

2(1−γ(1−γ))
and π̃a3 = 2V−1. So we can write π̃d3 as

π̃d3 =
(1− γ(1− γ))2

2(1− 2γ(1− γ))
π̃a2 +

1− γ(1− γ)

4(1− 2γ(1− γ))
π̃a3

To simplify the notation, let ϕ := γ(1 − γ). γ ∈ (1
2
, 1) ⇒ ϕ ∈ (0, 1

4
).

Then the sum of the two coefficients in the above expression becomes

(1− ϕ)2

2(1− 2ϕ)
+

1− ϕ

4(1− 2ϕ)
=

(1− ϕ)(3− 2ϕ)

4(1− 2ϕ)
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This sum is less than 1 if and only if 2ϕ2 + 3ϕ − 1 < 0, which holds true

for all ϕ ∈ (0, 1
4
). Hence, π̃d3 < (1−γ(1−γ))2

2(1−2γ(1−γ))
π̃a2 + (1 − (1−γ(1−γ))2

2(1−2γ(1−γ))
)π̃a3 with

(1−γ(1−γ))2

2(1−2γ(1−γ))
∈ (0, 1).

Case c3: Finally, I will show that π̃c3(γ) < π̃a2(γ) for all γ ∈ (1
2
, 1). Or

equivalently, π̃c3(x) < π̃a2(x), ∀x ∈ (1,∞).14 π̃c3

π̃a2
< 1 ⇐⇒ (x3 − 1)2(x2 +

1) < (x5 − 1)(x2 − 1)(x + 1) ⇐⇒ x(x4 + 1)(x − 1)2 > 0, which is true for

all x ∈ (1,∞).

F.2.1 Step 2: d1, d2, a1 and c4 are sub-optimal

The proofs have a similar structure: each of them will be outperformed by

one of the optimal cases on (1
2
, γ̂) and by another optimal case on (γ̂, 1).

The threshold γ̂ I choose may vary on a case-by-case basis.

Case d1: I want to show π̃d1 ≤ max(π̃a2, π̃c1)

Step 1: monotonicity of the expected payoff functions. π̃d1 =

λ1,4(V1 + V2). According to Appendix D λ1,4 is strictly increasing in γ.

In addition, it is easy to show that Vk is strictly increasing in γ if k > 0

and strictly decreasing in γ if k < 0. Hence, π̃d1 strictly increases in γ.

Similarly, we can prove that π̃c1 = λ1,5(V1 + V3) is strictly increasing in γ

and π̃a2 = λ2,3 is strictly decreasing in γ. As a result, π̃a2(γ) intersects with

each of the other two functions from above only once on (0.5, 1).

Step 2: find γ̂. By checking the MATLAB figures of the polynomial

functions, I conjecture 0.75 would be a good candidate for γ̂. With MAT-

LAB I calculate the numerical values of the relevant functions at γ̂ = 0.75:

π̃a2(0.75) ≈ 0.6154, π̃c1(0.75) ≈ 0.5809, π̃d1(0.75) ≈ 0.5775. As π̃a2(0.75) >

π̃c1(0.75) > π̃d1(0.75), we must have π̃d1(γ) < π̃a2(γ),∀γ ∈ (1
2
, γ̂].

Step 3: prove π̃c1(γ) ≥ π̃d1(γ) on (γ̂, 1). π̃c1 − π̃d1 = λ1,5(V1 + V3)−

λ1,4(V1 + V2) = (x−1)x
2(x+1)

[
(x4+1)(2x2+1−x)
(x5−1)(x2+1−x)

− (x3+1)(2x2+x+1)
(x4−1)(x2+1)

]
. Because x > 1,

14Recall that I define x = γ
1−γ in Appendix D.
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(x−1)x
2(x+1)

> 0. Hence, π̃31 ≥ π̃41 ⇔ (x4+1)(2x2+1−x)
(x5−1)(x2+1−x)

≥ (x3+1)(2x2+x+1)
(x4−1)(x2+1)

.

Since the denominators are positive when x > 1, it suffices to show

g(x) := (x4 + 1)(2x2 + 1− x)(x4 − 1)(x2 + 1)− (x3 + 1)(2x2 + x+ 1)(x5 −

1)(x2+1−x) ≥ 0. Note that x > 3 when γ ∈ (0.75, 1). We have proved in

the previous step that π̃31(0.75) − π̃41(0.75) > 0. So g(3) > 0. Rearrange

the expression of g(x) and we have g(x) = x(x8(x − 3) + x5(x2 − 1) +

x4 + x(x − 1) + 1). Then it is easy to see g(x) > 0,∀x ∈ (3,∞). Hence,

π̃c1(γ)− π̃d1(γ) > 0,∀γ ∈ (0.75, 1).

To sum up, we have proved π̃d1(γ) < max(π̃a2(γ), π̃c1(γ)), ∀γ ∈ (0.5, 1).

Case d1 is never an optimal choice for the seller.

Case d2: π̃d2(γ) < max(π̃a2(γ), π̃c2(γ)). The proof is analogous to the one

above. The threshold γ̂ I choose is 0.72. It’s easy to complete the proof

with the same procedure as case d1, so I do not repeat it here.

Case a1: π̃a1(γ) < max(π̃a2(γ), π̃c1(γ)) The proof is analogous to the one

above. The threshold γ̂ I choose is 0.75. Again I do not repeat the proof

here.

Case c4: π̃c4 < max(π̃a2, π̃a3). First, I will prove π̃c4 < π̃a3,∀x = γ
1−γ

∈

(1, 2] and π̃c4 < π̃a2,∀x ∈ (2,∞).

Step 1. I will prove π̃c4 < π̃a3, ∀x = γ
1−γ

∈ (1, 2]. Notice that the

expected payoffs of all the remaining choices in Table 2 are positive. π̃c4

π̃a3
=

(x+1)2(x2+3)(x+1)
8(x4+x3+x2+x+1)

> 1 if and only if x4(x − 5) − 2x2(x − 1
2
) + (x − 5) > 0,

which holds true for x ∈ (1, 2].

Step 2. I will show π̃c4 < π̃a2,∀x ∈ (2,∞). π̃c4

π̃a2
= (x3−1)(x2+3)

2(x5−1)
. Simi-

larly, we can show that π̃c4

π̃a2
< 1 ⇐⇒ x4(x− 2) + 2x3(x− 3

2
) + x2 + 1 > 0,

which holds true when x ∈ (2,∞).

F.2.2 Optimality of case a3, a2, c2, c1 and their order

Figure 8 plots the expected payoffs of the optimal cases as a function of γ.
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Approximate values π̃a3 π̃a2 π̃c2 π̃c1

γ = 0.505 0.99 0.6666 0.404 0.2041
γ = 0.685 0.63 0.6376 0.5854 0.4599
γ = 0.75 0.5 0.6154 0.6479 0.5809
γ = 0.995 0.01 0.5025 0.75 0.9925

Table 3: Approximate values of the expected payoff functions.

Step 1. In the single-version model (Appendix E) I have already proved

π̃a3(γ) and π̃a2(γ) intersect only once on (0.5, 1). As I will show below, the

same happens with π̃c2(γ) and π̃c1(γ).

π̃c2

π̃c1
= (x+1)(3x2+1)(x3+1)2

2(x2+1)(x4+1)(2x3−x2+x)
≥ 1 ⇐⇒ m2(x) := −x9 + 5x8 − 5x7 + 9x6 +

4x4 − x3 + 5x2 − x + 1 ≥ 0. First, I will prove m2(x) > 0 for x ∈ (1, 4].

Then I will show that m′
2(x) < 0,∀x ∈ (4,∞). As m2(x) is continuous on

(1,∞) and limx→∞ m2(x) = −∞, it must intersect with the horizontal axis

only once on (4,∞).

Rearrange them2(x) function and we havem2(x) = −x8(x−4)+x6(x2−

5x+ 9) + 4x3(x− 1
4
) + 5x(x− 1

5
) + 1. Because x ∈ (1, 4], −x8(x− 4) ≥ 0,

x − 1
4
> 0 and x − 1

5
> 0. x2 − 5x + 9 = (x − 2.5)2 + 11

4
> 0. Hence,

m2(x) > 0,∀x ∈ (1, 4].

Next, by rearranging the first order derive of m2(x) I find m′
2(x) =

−9x6(x−4)(x− 4
9
)+x3(−17x3+54x2+16)−3x(x− 10

3
)−1. With x > 4 we

can easily show that the first and third term is negative. As for the second

term, −17x3 + 54x2 + 16 = −(x3 − 16) − 16x2(x − 54
16
) < 0,∀x ∈ (4,∞).

Hence, we can conclude m′
2(x) < 0 on (4,∞).

Step 2. From previous sections we know π̃a3(γ) and π̃a2(γ) are strictly

decreasing in γ. Besides, π̃c2(γ) and π̃c1(γ) strictly increases in γ. There-

fore, either of the two functions π̃a3(γ) and π̃a2(γ) intersects with either

of π̃c2(γ) and π̃c1(γ) once and from above on (0.5, 1). In other words,

there will be at most one intersection point on (0.5, 1) for each pair from

{π̃13, π̃12} × {π̃32, π̃31}. Table 3 shows the following inequalities hold.
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At γ = 0.505, π̃a3 > π̃a2 > π̃c2 > π̃c1. (3)

At γ = 0.995, π̃a3 < π̃a2 < π̃c2 < π̃c1. (4)

At γ = 0.685, π̃a2 > π̃a3 > π̃c2 > π̃c1. (5)

At γ = 0.75, π̃c2 > π̃a2 > π̃c1 > π̃a3. (6)

Together with previous observations, the inequalities (3) and (5) have two

implications. First, case c2 and c1 are suboptimal on (0.5, 0.685). Besides,

π̃a2 and π̃a3 intersects at some γ ∈ (0.5, 0.685). Let γs be the solution to

π̃a3(γ) = π̃a2(γ). Then, among the single-version policies, a3 is better than

a2 on (0.5, γs) and the opposite happens on (γs, 1).

Similarly, the inequalities (4) and (6) tells us, among the multi-version

policies, c1 is better than case c2 on (γm, 1) and the opposite happens on

(0.5, γm), where γm is the solution to π̃c1(γ) = π̃c2(γ).

Consequently, the optimal case between (γs, γm) is either case c2 or a2.

By inequalities (5) and (6) we know π̃a2 intersects with π̃c2 from above on

(0.685, 0.75). Let γv be the solution to π̃a2(γ) = π̃c2(γ). Then a2 will be

the unique optimal choice on (γs, γv) and c2 will be the unique optimal

choice on (γv, γm).

Hence, the order of the optimal prices in Table 1 is correct.
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