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Abstract

We study a discrete-time mean-field game of epidemic behavior with heterogeneous, atomless

agents who choose communicable activity in response to an evolving infection state. The ag-

gregate state augments prevalence with the cross-section of remaining susceptibles, allowing for

consistent population dynamics. We prove existence of a pure Markov mean-field equilibrium

(MFE) and characterize equilibrium behavior via a simple curvature test that compares the

log-slopes of activity benefits and infection risk. When marginal utility declines at least as fast

as marginal risk, equilibrium choices are smooth and obey first-order KKT conditions. When

marginal risk decays faster (a “front-loaded risk”environment), any interior stationary point is

a local minimum and equilibrium choices are bang—bang: a unique cutoff partitions types into

zero-activity and full-activity camps. A random-matching Poisson micro-foundation delivers a

clean rate comparison– smooth vs polarization– and implies an endogenous transition from po-

larized to smooth responses as prevalence falls. The framework rationalizes heterogeneous public

reactions across outbreaks and yields operational diagnostics for targeted, state-contingent pol-

icy.

Keywords: mean-field equilibrium; epidemic behavior; polarization; bang—bang control; ran-

dom matching; Poisson transmission; heterogeneous agents; curvature test.

JEL: C73; C61; D83; I18.
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1 Introduction

Why do public health crises sometimes elicit sharply divided behaviors– with some people taking

extreme precautions while others behave as usual– whereas in other episodes public responses

look comparatively smooth? Survey evidence from the early COVID-19 period suggests pro-

nounced polarization in preventive choices across many cities and countries (e.g., YouGov),

while similar divides were far less prominent in other outbreaks.1 A natural conjecture is that

polarized behavior merely mirrors polarized preferences or demographics. This paper shows

that polarization can emerge endogenously even when the distribution of types is atomless and

unimodal, preferences are smooth, and beliefs are common: the transmission technology alone

can generate sharply divided equilibrium responses.

We develop a dynamic, discrete-time mean-field model of epidemic behavior with heteroge-

neous agents who differ only in vulnerability (the lifetime utility if infected). At the start of

each period, a susceptible agent observes the aggregate infectious state and chooses a level of

communicable activity. Infection risk depends on both the infectious state and own activity.

If infected, the agent becomes immune thereafter. In this environment we study pure Markov

mean-field equilibria (MFE): each agent best responds to a conjectured aggregate law of motion,

and in equilibrium the population’s behavior reproduces that same law.

Our contributions are threefold.

1. MFE formulation and existence with an augmented state. We cast the epidemic interaction

as a mean-field game with the augmented aggregate state (ϑ,m): the fraction infectious ϑ

and the cross-section of remaining susceptibles m (a sub-probability measure over types).

We allow relaxed (mixed) Markov policies and prove the existence of a pure Markov MFE

by (i) solving each agent’s Bellman equation for any continuous aggregate transition, (ii)

showing continuity of the best-response map, and (iii) applying Schauder/Kakutani on a

compact, convex policy space. This delivers a fixed point in policies whose induced law of

motion coincides with the conjectured one. Uniqueness is not required for our behavioral

characterization.

2. Two equilibrium regimes: smooth vs. polarized. We provide a crisp curvature condition that
1For example, during the 2009 H1N1 outbreak, surveys in Saudi Arabia, Australia, and India reported dis-

tributions of precautionary behavior that were not bimodal; see (Balkhy et al., 2010; Seale et al., 2009; Kamate
et al., 2010).
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separates two qualitative regimes of equilibrium behavior, stated in terms of the log-slope

(curvature over slope) of benefits and risks:

v′′(a)

v′(a)
Q p22(ϑ, a)

p2(ϑ, a)
for all a ∈ [0, 1].

When the marginal utility from activity declines at least as fast as the marginal infection

risk (left inequality), optimal actions are smooth: the KKT first-order condition pins down

a unique interior choice except when boundaries bind. When the marginal infection risk

decays faster with action than marginal utility (right inequality), any interior stationary

point is a local minimum; equilibrium choices are therefore bang-bang (polarized). We

show existence of a unique cutoff c(ϑ,m) such that higher-vulnerability agents (lower x)

optimally choose 0 while lower-vulnerability agents choose 1.

3. Micro-foundation via random matching and Poisson transmission. We micro-found the

infection technology with random matching and Poisson arrival conditional on exposure.

With p(ϑ, a) = ϑ(1 − e−λa) and an exponentially smoothed activity utility v(a) = (1 −
e−γa)/(1− e−γ), the regime test collapses to a comparison of rates:

smooth if γ ≥ λ and polarized if γ < λ.

In the latter (“front-loaded risk”) case, the unique interior MB=MC crossing is a local

minimum, so optimal choices jump to corners and a cutoff policy obtains. As prevalence

falls along the equilibrium path, the economy can transition endogenously from a polarized

to a smooth regime.

The key insight is that discrete-time decisions interact with the curvature of the transmission

technology. When the instantaneous hazard of infection decays quickly with additional activity

(relative to the decay in marginal utility), a myopic interior crossing of marginal benefit and

marginal cost cannot be optimal: the objective is locally convex at that point. The global

maximizers are at the extremes, producing a cutoff in types and a polarized aggregate response.

Conversely, when utility’s marginal benefit decays at least as fast as marginal risk, the objective

is locally concave and the interior FOC characterizes behavior.
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Relation to the literature. Our work contributes to mean-field models of strategic behavior

and to the economic-epidemiology literature that endogenizes preventive activity (Toxvaerd,

2020; Farboodi et al., 2021; Carnehl et al., 2023; McAdams et al., 2023; Egorov et al., 2021;

Keppo et al., 2021; Baril-Tremblay et al., 2021; Dasaratha, 2023). While Acemoglu et al. (2023)

show that extreme actions may arise from network formation, we obtain sharp polarization in a

representative, frictionless matching environment driven by the memoryless (Poisson) nature of

exposure risk. On the methodological side, our augmented-state MFE existence result follows

the fixed-point approach standard in mean-field games (continuous time and discrete time),

adapted here to a discrete-time SIR setting with a measure-valued state.

Section 2 sets up the model and defines MFE with the augmented state. Section 3.2 proves

existence of a pure Markov MFE. Section 4 characterizes smooth and polarized regimes via the

curvature test and establishes the cutoff structure in the polarized case. Section 5 provides

the random-matching Poisson micro-foundation and two extensions (endogenous transmission

intensity and resource-based prevention). Section 6 concludes.

2 Model

Consider a society populated by a continuum of agents with a population size equal to 1. Time

is divided into discrete periods t ∈ N = {1, 2, ...} of equal length. An infectious disease occurs
at t = 0 and evolves over time. Using the SIR terminology, at the start of any period t (or

epoch t), agents can be partitioned into three subpopulations: the susceptible, the infectious,

and the recovered. The susceptible agents have not been previously infected. The infectious

agents were infected in the previous period t − 1 and spread the disease in period t; they will

become uninfectious and immune to the disease from epoch t + 1 onward. Let the size of the

infectious population be denote by ϑt ∈ Θ := [0, 1], referred to as the infectious state at epoch

t. Our focus will be on the behavior of the susceptible agents.

Endogenized infection probability. At each epoch t ∈ N, a susceptible agent chooses
a level of communicable activity (or action) at ∈ A := [0, 1] for period t. The agent will then

be infected with probability p(ϑt, at) by the end of period t. We assume that the function

p : Θ × X → [0, 1) is twice continuously differentiable: p ∈ C2 (Θ×X). Let the subscripts
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denote the partial derivatives with respect to the associated arguments. We assume

p(ϑ, 0) = p(0, a) = p1(ϑ, 0) = p2(0, a) ∀(ϑ, a), and p(ϑ, 1) < 1 ∀ϑ > 0, (1)

and that p1(ϑ, a) > 0 ∀a > 0, p2(ϑ, a) > 0 ∀ϑ > 0, and p12(ϑ, a) ≥ 0. Thus, increasing either ϑt

or at increases the infection risk, and the marginal probability of infection w.r.t. action is also

(weakly) increasing in the infectious state. At the end of the period, agents observe whether

they have become infected.

Heterogeneous agents. Each agent has a type x ∈ [0, 1]. The type space X := [0, 1]

is endowed with its Borel σ-algebra. Types are distributed according to a (bounded) Borel

probability measure m0 ∈ P(X), where P(X) denotes the set of Borel probability measures on

X that are bounded from ∞. We do not require m0 to admit a density; m0 may be discrete,

continuous, or mixed.

With δ ∈ (0, 1) being the common discount factor, each agent enjoys a lifetime utility U =

1/(1 − δ) from full activity without infection. If a type-x agent becomes infected, they will

suffer an expected disutility D(x),2 reducing U to B(x) = U − D(x). Specifically, we assume

B : X → (0, U ] is continuously differentiable: B ∈ C1(X) and strictly increasing: B′(x) > 0 for

all x ∈ X. Thus, lower types expect higher losses upon infection, e.g., elderly people.
Payoffs. Let a = {at}∞t=1 represent an activity plan by the type-x susceptible agents, in

which at is a measurable function of all information at epoch t (dropping the dependence of

at on x to simplify notation). The flow utility from engaging in communicable activities is

measured by a twice continuously differentiable function v : A → [0, 1], satisfying v′ > 0 and

0 ≤ v(0) < v(1) = 1. Being infected in period t ∈ N means that they will realize a discounted
payoff (viewed at epoch 1):

t∑
s=1

δs−1v(at) + δtB(x)

Let ϑ = {ϑt}∞t=1 represent an aggregate infection path. Given (ϑ, a), the probability of not

being infected through t−1 periods equals
∏t−1

s=1(1−p(ϑs, as)) (defining
∏0

s=1(·) ≡ 1). Therefore,

2The disutility can be related to any consequences of being sick of the disease, ranging from mild discomfort
to death. The simplifying assumption here is that each type x of the agents is able to rationally quantify their
expected disutility beforehand, conditional on being infected.
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their discounted expected payoff equals

∞∑
t=1

δt−1
t−1∏
s=1

(1− p(ϑs, as)) [v(at) + δp(ϑt, at)B(x)] (2)

The type-x agents’objective is to choose an activity plan that maximizes the expected payoff

in (2), as long as they remain uninfected.

3 Population Dynamics

Because infections remove susceptible mass over time in a type-dependent way, it is convenient

to work directly with sub-probability measures rather than P(X). Let Σ(X) denote the Borel

σ-algebra over X, and define

M := {m : Σ(X)→ R+ such that m ≤ m0} ,

i.e., the set of sub-probability measures on X, endowed with the weak topology.

• Aggregate state. At time t, the aggregate state is the pair (ϑt,mt) ∈ Θ×M , where:

—ϑt is the current fraction of infected (or the infectious state);

—mt is the cross-sectional distribution of susceptible types at time t (a sub-probability

measure with total mass mt(X) ≤ 1).

• Initial condition. In period 0, the aggregate state (ϑ0,m0) ∈ [0, 1] × P(X) is assumed

to be given, where m0 is the initial cross-section of susceptible types. Since agents were

unaware of the disease, they took action 1 in period 0 as usual. By the end of period 0,

the population observes ϑ1 of the agents infected, given by

ϑ1 =

∫
X

p (ϑ0, 1) m0(dx)

As a result, the mass of type-x agents who remain susceptible is reduced to:

m1(dx) = (1− p(ϑ0, 1))m0(dx).
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• Population update under stationary Markov policies. A (possibly randomized)

stationary Markov policy is a stochastic kernel

µ(· | x, ϑ,m) ∈ ∆(A),

measurable in (x, ϑ,m). A pure policy α : X ×Θ×M → A is the special case where

µ(du | x, ϑ,m) = δα(x,ϑ,m)(du),

with δa denoting the Dirac mass at a.

Given a stationary Markov policy µ and current aggregate state (ϑt,mt), next period’s

aggregate state is

Φµ(ϑt,mt) := ϑt+1 =

∫
X

∫
A

p(ϑt, a)µ(da | x, ϑt,mt)mt(dx),

and the law of motion for mt is given by

〈ϕ,Ψµ(ϑt,mt)〉 :=

∫
X

ϕ(x)
(

1−
∫
A

p(ϑt, a)µ(da | x, ϑt,mt)
)
mt(dx), ∀ϕ ∈ C(X),

which defines (Φµ,Ψµ) : Θ×M → Θ×M .

Thus, under µ the mass of type-x agents who remain susceptible is reduced by the infection

factor

1−
∫
A

p(ϑt, a)µ(da | x, ϑt,mt).

A pure policy α is recovered by taking µ(· | x, ϑ,m) degenerate at α(x, ϑ,m), in which

case (??)—(??) are special cases of the formulas above.

3.1 Individual dynamic program.

Fix a continuous aggregate transition S = (Φ,Ψ) : Θ ×M → Θ ×M . The value function of a
type-x agent, when the aggregate evolves according to S, is a function

VS : X ×Θ×M → R
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that solves the Bellman equation

VS(x, ϑ,m) = max
a∈A

{
v(a) + δ p(ϑ, a)B(x) (3)

+δ
(
1− p(ϑ, a)

)
VS
(
x,Φ(ϑ,m),Ψ(ϑ,m)

)}
. (4)

Because δ ∈ (0, 1) and 0 ≤ 1 − p(ϑ, a) ≤ 1, the Bellman operator associated with (3) is a

contraction in the sup norm, and thus admits a unique bounded fixed point VS.

Theorem 1 (Individual problem: existence under a given aggregate law) For each con-

tinuous aggregate transition S = (Φ,Ψ), there exists a unique bounded solution VS to the Bellman

equation (3). Moreover, there exists a stationary Markov policy (possibly mixed) µS(· | x, ϑ,m)

attaining this value, in the sense that for every (x, ϑ,m) the support of µS(· | x, ϑ,m) is contained

in the set of maximizers of the right-hand side of (3).

Proof. Fix a continuous aggregate transition S = (Φ,Ψ) : Θ ×M → Θ ×M and define the

Bellman operator TS on the space of bounded functions

B := {V : X ×Θ×M → R bounded and Borel measurable}

by

(TSV )(x, ϑ,m) := max
a∈A

{
v(a) + δ p(ϑ, a)B(x) + δ

(
1− p(ϑ, a)

)
V
(
x,Φ(ϑ,m),Ψ(ϑ,m)

)}
.

Step 1: TS is a contraction. Equip B with the sup norm

‖V ‖∞ := sup
(x,ϑ,m)∈X×Θ×M

|V (x, ϑ,m)|.

Let V1, V2 ∈ B. For any (x, ϑ,m) and any a ∈ A,

∣∣∣[v(a) + δp(ϑ, a)B(x) + δ(1− p(ϑ, a))V1(x,Φ(ϑ,m),Ψ(ϑ,m))
]

−
[
v(a) + δp(ϑ, a)B(x) + δ(1− p(ϑ, a))V2(x,Φ(ϑ,m),Ψ(ϑ,m))

]∣∣∣
≤ δ |1− p(ϑ, a)|

∣∣V1(x,Φ(ϑ,m),Ψ(ϑ,m))− V2(x,Φ(ϑ,m),Ψ(ϑ,m))
∣∣

≤ δ ‖V1 − V2‖∞,
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using 0 ≤ 1− p(ϑ, a) ≤ 1. Taking the maximum over a ∈ A on both sides yields

|(TSV1)(x, ϑ,m)− (TSV2)(x, ϑ,m)| ≤ δ ‖V1 − V2‖∞

for all (x, ϑ,m). Hence

‖TSV1 − TSV2‖∞ ≤ δ ‖V1 − V2‖∞,

so TS is a contraction on (B, ‖ · ‖∞) with modulus δ ∈ (0, 1). By Banach’s fixed point theorem,

there exists a unique bounded function VS ∈ B such that

VS = TSVS,

i.e. VS is the unique bounded solution of the Bellman equation (3).

Step 2: existence of an optimal stationary Markov policy. Fix (x, ϑ,m) ∈ X × Θ ×M and

consider the one-step objective as a function of a:

Fx,ϑ,m(a) := v(a) + δp(ϑ, a)B(x) + δ
(
1− p(ϑ, a)

)
VS
(
x,Φ(ϑ,m),Ψ(ϑ,m)

)
, a ∈ A.

By assumption, v and p are continuous in a, B is continuous in x, and VS is bounded. Moreover,

Φ and Ψ are continuous in (ϑ,m) by assumption on S. Therefore, for fixed (x, ϑ,m), the function

a 7→ Fx,ϑ,m(a) is continuous on the compact action set A = [0, 1].

By the Weierstrass theorem, Fx,ϑ,m attains its maximum on A. Define the argmax set

ΓS(x, ϑ,m) := arg max
a∈A

Fx,ϑ,m(a),

which is nonempty and compact for each (x, ϑ,m).

Define a relaxed stationary Markov policy µS by specifying that, for each (x, ϑ,m), the

probability measure µS(· | x, ϑ,m) ∈ ∆(A) has support contained in ΓS(x, ϑ,m). For instance,

one may choose

µS(· | x, ϑ,m) := δa∗(x,ϑ,m)(·),

where a∗(x, ϑ,m) ∈ ΓS(x, ϑ,m) is any Borel-measurable selection.3 By construction, µS is a

3The existence of such a measurable selection follows from standard measurable selection theorems (e.g.
Kuratowski—Ryll-Nardzewski) applied to the argmax correspondence ΓS .
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stationary Markov policy, and at every state (x, ϑ,m) it places its mass on maximizers of Fx,ϑ,m.

Therefore, µS attains the value VS.

3.2 Mean-Field Equilibrium

In our setting there is a continuum of infinitesimal agents, each facing the same dynamic infection

environment but having no individual impact on it. A mean-field equilibrium (MFE) formalizes

this idea: each agent takes as given an aggregate law of motion for the epidemic (how the

population infection state (ϑt,mt) evolves over time), chooses an optimal Markov policy µ∗(· |
x, ϑt,mt) given that law, and in equilibrium the population’s actual behavior under µ∗ reproduces

exactly the same law of motion. In other words, in an MFE beliefs about the aggregate dynamics

are correct and each agent optimally responds to those dynamics.

This equilibrium concept is particularly appropriate for our epidemic model for three reasons.

First, agents are atomless, so it is natural for them to treat the aggregate state as exogenous

when making individual decisions. Second, infection and recovery dynamics are driven by the

distribution of behaviors across types rather than by any single agent, which is exactly what

the "mean field" captures. Third, MFE allows us to focus on tractable Markov policies that

depend only on the current aggregate state (ϑt,mt) while still enforcing full consistency between

individual optimization and population-level epidemic dynamics.

Definition 1 (Markov Mean-Field Equilibrium with augmented state) A pair (V ∗, µ∗)

is a (relaxed) Markov mean-field equilibrium (MFE) if:

1. Optimality. Let S∗ := (Φµ∗ ,Ψµ∗) be the aggregate transition induced by µ∗. Then V ∗ is the

unique bounded solution to the Bellman equation

V ∗(x, ϑ,m) = max
a∈[0,1]

{
v(a) + δ p(ϑ, a)B(x) + δ

(
1− p(ϑ, a)

)
V ∗
(
x, S∗(ϑ,m)

)}
,

and for all (x, ϑ,m) the relaxed policy µ∗(· | x, ϑ,m) is supported on the set of maximizers of the

right-hand side, i.e.

suppµ∗(· | x, ϑ,m) ⊆ ΓS∗(x, ϑ,m),

where ΓS∗(x, ϑ,m) denotes the argmax set.
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2. Consistency. For every initial aggregate state (ϑ0,m0), the induced path (ϑt,mt)t≥0 satisfies

ϑt+1 = Φµ∗(ϑt,mt) =

∫
X

∫
A

p(ϑt, a)µ∗(da | x, ϑt,mt)mt(dx),

and

〈ϕ,mt+1〉 = 〈ϕ,Ψµ∗(ϑt,mt)〉 =

∫
X

ϕ(x)
(

1−
∫
A

p(ϑt, a)µ∗(da | x, ϑt,mt)
)
mt(dx), ∀ϕ ∈ C(X),

for all t = 0, 1, 2, . . . . Equivalently, (ϑt+1,mt+1) = S∗(ϑt,mt) for all t.

3.3 Equilibrium existence

We first establish the existence of a MFE.

Theorem 2 (Existence of Markov MFE with augmented state) Let X = [0, 1] be the

type space, and let Θ = [0, 1] be the space of aggregate infection levels. Let M be the set of Borel

sub-probability measures on X, endowed with the weak topology. The aggregate state space is

S := Θ×M , which is compact and metrizable.
For any stationary Markov policy µ(· | x, ϑ,m), define the induced aggregate transition Sµ =

(Φµ,Ψµ) : S → S as above. Then there exists a Markov mean-field equilibrium (V ∗, µ∗) with

augmented state (ϑ,m) in the sense of Definition 1.

Proof (sketch). Fix any state-transition kernel S : S → S. By Theorem 1, the associated

Bellman operator TS is a contraction on the space of bounded functions V : X×S → R endowed

with the sup norm, and there exists a unique bounded solution VS to the Bellman equation. For

each (x, ϑ,m), let ΓS(x, ϑ,m) ⊂ A denote the (nonempty, compact) argmax set in the Bellman

problem with continuation S.

An individually optimal relaxed policy given S is any Markov kernel µ(· | x, ϑ,m) whose

support at each state (x, ϑ,m) is contained in ΓS(x, ϑ,m). By Berge’s maximum theorem and the

continuity of primitives, the argmax correspondence ΓS is upper hemicontinuous with nonempty

compact values, and the induced best-response correspondence from aggregate transitions S to

optimal kernels µ is nonempty, convex-valued, and upper hemicontinuous on a compact convex

set of Markov kernels.
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Conversely, given a kernel µ, the induced aggregate transition Sµ = (Φµ,Ψµ) is continuous

in (ϑ,m) because it is defined by integrating continuous functions of (x, ϑ,m, a) against µ and

m on compact domains. Thus, composing the maps “µ 7→ Sµ”and “S 7→ optimal µ”yields a

self-correspondence on the compact convex set of Markov kernels that satisfies the conditions of

Kakutani’s fixed point theorem.

Therefore there exists a kernel µ∗ such that µ∗ is an optimal response to Sµ∗. Let S∗ := Sµ∗

and V ∗ := VS∗. By construction, V ∗ solves the Bellman equation with continuation S∗, and

µ∗ is pointwise optimal given V ∗, establishing optimality. The definition of Sµ ensures that the

aggregate path (ϑt,mt) induced by µ∗ satisfies (ϑt+1,mt+1) = S∗(ϑt,mt) for all t, which is exactly

the consistency condition. Hence (V ∗, µ∗) is a Markov MFE with augmented state (ϑ,m).

4 Equilibrium Behavior

In this section we characterize the mean-field equilibrium (MFE) under two qualitatively different

parameter regimes. Although our existence result is formulated for (possibly randomized) relaxed

stationary Markov policies, we will focus here on pure stationary Markov policies

α∗ : X ×Θ×M → [0, 1], (x, ϑ,m) 7→ α∗(x, ϑ,m),

which arise when the equilibrium relaxed policy assigns probability one to a single action at each

state:

µ∗(du | x, ϑ,m) = δα∗(x,ϑ,m)(du).

Let S∗ = (Φµ∗ ,Ψµ∗) denote the aggregate transition induced by the equilibrium policy, and

write S∗(ϑ,m) = (ϑ′,m′). It is convenient to define, for a type-x susceptible agent,

D∗(x, S∗(ϑ,m)) := V ∗(x, S∗(ϑ,m))−B(x),

the infection premium: the difference between the ex-ante continuation value of being currently

susceptible and the utility B(x) the agent would obtain if already infected and immune. By the

one-stage deviation principle, in an MFE the pure policy α∗ must satisfy, for each (x, ϑ,m), that
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α∗(x, ϑ,m) maximizes

Fx,ϑ,m(a) := v(a) + δ p(ϑ, a)B(x) + δ
(
1− p(ϑ, a)

)
V ∗(x, S∗(ϑ,m)), a ∈ [0, 1]. (5)

4.1 Monotonicity in type

We first establish how the equilibrium value and infection premium vary with the health type x.

Lemma 1 For each aggregate state (ϑ,m), both V ∗(x, S∗(ϑ,m)) and D∗(x, S∗(ϑ,m)) are differ-

entiable in x, and

∂

∂x
V ∗(x, S∗(ϑ,m)) ≥ 0,

∂

∂x
D∗(x, S∗(ϑ,m)) < 0, ∀x ∈ X.

Proof. Fix a type x and consider the equilibrium path (ϑt,mt)t≥0 under α∗, with (ϑt,mt) =

S∗(ϑt,mt) along this path. For brevity, denote

α∗t := α∗(x, ϑt,mt), pt := p(ϑt, α
∗
t ).

From the Bellman equation under S∗, we have

V ∗(x, ϑt,mt) = v(α∗t ) + δptB(x) + δ(1− pt)V ∗(x, S∗(ϑt,mt)).

Subtracting B(x) from both sides and using D∗(x, S∗) = V ∗(x, S∗)−B(x) yields the recursion

D∗(x, ϑt,mt) = v(α∗t )− (1− δ)B(x) + δ(1− pt)D∗
(
x, S∗(ϑt,mt)

)
.

Iterating this recursion and writing
∏−1

r=0(·) ≡ 1, we obtain the sequence representation

D∗(x, ϑt,mt) =

∞∑
s=0

δs
s−1∏
r=0

(
1− pt+r

) [
v(α∗t+r)− (1− δ)B(x)

]
.

12



Using the envelope theorem (or differentiating term-by-term and applying dominated con-

vergence), we may differentiate with respect to x, treating the optimal controls α∗t as fixed:

∂

∂x
D∗(x, ϑt,mt) = −(1− δ)B′(x)

∞∑
s=0

δs
s−1∏
r=0

(
1− pt+r

)
.

Each factor satisfies 0 ≤ 1− pt+r ≤ 1, so

0 <
∞∑
s=0

δs
s−1∏
r=0

(
1− pt+r

)
≤

∞∑
s=0

δs =
1

1− δ ,

and hence

0 < (1− δ)
∞∑
s=0

δs
s−1∏
r=0

(
1− pt+r

)
≤ 1.

Because B′(x) > 0 by assumption, it follows that

−B′(x) ≤ ∂

∂x
D∗(x, S∗(ϑt,mt)) < 0,

so D∗ is strictly decreasing in x and its derivative is bounded below by −B′(x).

Finally, recall that

D∗(x, S∗(ϑt,mt)) = V ∗(x, S∗(ϑt,mt))−B(x),

so
∂

∂x
D∗(x, S∗(ϑt,mt)) =

∂

∂x
V ∗(x, S∗(ϑt,mt))−B′(x).

Combining this with −B′(x) ≤ ∂xD
∗ < 0 implies

0 ≤ ∂

∂x
V ∗(x, S∗(ϑt,mt)) < B′(x),

so V ∗ is nondecreasing in x. This proves the lemma.

We next establish how the equilibrium strategies vary with x.

Lemma 2 The equilibrium strategy α∗(x, ϑ,m) is nondecreasing in x.

13



Proof. Take any x ∈ X. The cross-partial derivative of Fx,ϑ,m(a), holding α∗t = α∗(x, ϑt,mt)

fixed, is given by

∂2

∂a∂x
Fx,ϑ,m(a)|a=α∗ = −δ p2(ϑ, α∗)

∂

∂x
D∗ (x, S∗(ϑ,m)) ≥ 0 (6)

where the inequality derives from Lemma 1. Standard arguments then establish the conclusion

of the lemma (e.g., Milgrom and Shannon (1994)).

4.2 Smooth public response to the health crisis

We first analyze a smooth case in which agents trade off marginal benefits of activity against

marginal infection risk in an interior way. The key condition is that the per-period objective in

a is (weakly) concave at an interior optimum.

Proposition 1 (Smooth response) Suppose that, for all a ∈ [0, 1] and ϑ ∈ Θ,

v′′(a)

v′(a)
≤ p22(ϑ, a)

p2(ϑ, a)
. (7)

(i) The equilibrium policy α∗ satisfies the KKT conditions:

v′(α∗)− δ p2(ϑ, α∗)D∗ (x, S∗(ϑ,m)) = 0 if α∗(x, ϑ,m) ∈ (0, 1)

v′(1)− δ p2(ϑ, 1)D∗ (x, S∗(ϑ,m)) ≥ 0 iff α∗(x, ϑ,m) = 1

v′(0)− δ p2(ϑ, 0)D∗ (x, S∗(ϑ,m)) ≤ 0 iff α∗(x, ϑ,m) = 0

(8)

(ii) Along any equilibrium path (ϑt,mt)t≥0, for each x ∈ X,

α∗(x, ϑt,mt)→ 1 as t→∞.

Proof. (i) Fix (ϑ,m) and a type x. Because individual agents are atomless, a deviation in a

does not affect the aggregate transition S∗, so the continuation value V ∗(x, S∗(ϑ,m)) can be

treated as constant in the choice of a. Differentiating (5) with respect to a gives

∂

∂a
Fx,ϑ,m(a) = v′(a) + δ p2(ϑ, a)B(x)− δ p2(ϑ, a)V ∗(x, S∗(ϑ,m))

= v′(a)− δ p2(ϑ, a)D∗(x, S∗(ϑ,m)).
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Similarly,
∂2

∂a2
Fx,ϑ,m(a) = v′′(a)− δ p22(ϑ, a)D∗(x, S∗(ϑ,m)).

At an interior optimum a = α∗(x, ϑ,m) ∈ (0, 1) we have F ′x,ϑ,m(α∗) = 0, that is,

v′(α∗) = δ p2(ϑ, α∗)D∗(x, S∗(ϑ,m)).

Substituting into F ′′ yields

F ′′x,ϑ,m(α∗) = v′(α∗)

(
v′′(α∗)

v′(α∗)
− p22(ϑ, α∗)

p2(ϑ, α∗)

)
.

Under condition (7), the term in parentheses is nonpositive, and since v′ > 0, we obtain

F ′′x,ϑ,m(α∗) ≤ 0, with strict inequality if (7) is strict at α∗. Thus interior optima satisfy the

first line in (8) and are (weak) local maxima. The boundary conditions follow from the usual

Kuhn-Tucker argument: if α∗ = 1 were not optimal, a small deviation inward would strictly

increase Fx,ϑ,m, contradicting optimality; the same reasoning applies at 0.

(ii) Along any equilibrium path, the mass of newly infected agents in period t is ϑt. Since

each infected agent remains infectious for exactly one period and then becomes immune, the

total mass of agents who are ever infected is
∑∞

t=1 ϑt ≤ 1. Hence ϑt → 0 as t→∞.
By continuity of p2 and the assumptions in (1) that p2(ϑ, 1)→ 0 as ϑ ↓ 0, we have p2(ϑt, 1)→

0 as t → ∞. The equilibrium value functions are uniformly bounded, so there exists K < ∞
with |D∗(x, S∗(ϑt,mt))| ≤ K for all t and x. Then

v′(1)− δ p2(ϑt, 1)D∗(x, S∗(ϑt,mt)) → v′(1) > 0 as t→∞,

so by the boundary KKT condition in (8), for all suffi ciently large t the unique maximizer satisfies

α∗(x, ϑt,mt) = 1. Hence α∗(x, ϑt,mt)→ 1 as t→∞.

4.3 Polarized public response to the health crisis

We now turn to a regime in which the equilibrium response is polarized (bang-bang): agents

either shut down activity completely or behave as if there were no epidemic. This occurs when

the per-period objective in a is (strictly) convex rather than concave at stationary points.
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Proposition 2 (Polarized response) Suppose that, for all a ∈ [0, 1] and ϑ ∈ Θ,

v′′(a)

v′(a)
>

p22(ϑ, a)

p2(ϑ, a)
. (9)

Then:

(i) There exists a cutoff function c : Θ × M → [0, 1] such that the equilibrium policy is

bang-bang:

α∗(x, ϑ,m) =

 1 if x ≥ c (ϑ,m)

0 if x < c (ϑ,m)

(ii) Along any equilibrium path (ϑt,mt), we have c(ϑt,mt)→ 0 as t→∞. In fact, for t large
enough, c(ϑt,mt) = 0 so that α∗(x, ϑt,mt) ≡ 1 for all x.

Proof. (i) Under (9), at any interior point a ∈ (0, 1) satisfying F ′x,ϑ,m(a) = 0, we have

F ′′x,ϑ,m(a) = v′(a)

(
v′′(a)

v′(a)
− p22(ϑ, a)

p2(ϑ, a)

)
> 0,

so a is a local minimum rather than a maximum of Fx,ϑ,m. Hence no interior point can be

optimal, and for any (x, ϑ,m) we must have

α∗(x, ϑ,m) ∈ {0, 1}.

To determine which boundary is chosen, compute the difference in value between the two

corners:

∆(x, ϑ,m) := Fx,ϑ,m(1)− Fx,ϑ,m(0)

=
[
v(1) + δp(ϑ, 1)B(x) + δ(1− p(ϑ, 1))V ∗(x, S∗(ϑ,m))

]
−
[
v(0) + δp(ϑ, 0)B(x) + δ(1− p(ϑ, 0))V ∗(x, S∗(ϑ,m))

]
.

Using p(ϑ, 0) = 0 and simplifying,

∆(x, ϑ,m) = v(1)− v(0)− δp(ϑ, 1)D∗(x, S∗(ϑ,m)).
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By Lemma 1, D∗(x, S∗(ϑ,m)) is strictly decreasing in x, so ∆(x, ϑ,m) is strictly increasing in

x. Define the cutoff c(ϑ,m) as follows:

- If there exists x ∈ X with ∆(x, ϑ,m) = 0, let c(ϑ,m) be that unique value; - If ∆(x, ϑ,m) >

0 for all x, set c(ϑ,m) := 0 (then all types choose 1); - If ∆(x, ϑ,m) < 0 for all x, set c(ϑ,m) := 1

(then all types choose 0).

In all cases, the optimal policy is

α∗(x, ϑ,m) =

 1 if x ≥ c (ϑ,m)

0 if x < c (ϑ,m)

as claimed.

(ii) Along any equilibrium path (ϑt,mt), we have ϑt → 0 as t→∞, by the same argument as
in Proposition 1: the total mass of agents who are ever infected is at most 1, and each infected

agent is infectious for only one period. Assume p(ϑ, 1)→ 0 as ϑ ↓ 0 (which holds, for example,

if p(ϑ, a) = ϑq(a) for some q).

For each (ϑt,mt), the cutoff c(ϑt,mt) is defined (in the interior case) by the equation

∆(c(ϑt,mt), ϑt,mt) = v(1)− v(0)− δp(ϑt, 1)D∗
(
c(ϑt,mt), S

∗(ϑt,mt)
)

= 0.

The infection premium D∗(x, S∗(ϑt,mt)) is uniformly bounded in t and x because V ∗ is bounded

and B(x) lies in (0, U ]. Thus there exists K <∞ with

|D∗(x, S∗(ϑt,mt))| ≤ K, ∀x, t.

Since p(ϑt, 1)→ 0, we have

v(1)− v(0)

δp(ϑt, 1)
→ +∞ as t→∞.

But

∆(x, ϑt,mt) = v(1)− v(0)− δp(ϑt, 1)D∗(x, S∗(ϑt,mt)) ≥ v(1)− v(0)− δp(ϑt, 1)K,
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Figure 1: In a strong infectious environment, agents’reactions are polarized (blue curves). In a
mild infectious environment, agents’reactions are smooth.

so for t large enough, ∆(x, ϑt,mt) > 0 for all x. In that case c(ϑt,mt) = 0, i.e. all types

strictly prefer α∗ = 1. Consequently c(ϑt,mt)→ 0 as t→∞, and for all suffi ciently large t the
equilibrium policy satisfies

α∗(x, ϑt,mt) ≡ 1 for all x ∈ X.

Figure 1 illustrates the different public reactions to the two regimes.

5 Micro Foundation of Equilibrium Behavior

This section provides an intuitive foundation for Propositions 1 (smooth response) and 2 (po-

larized response). We model infection as the outcome of random matching with the currently

infectious fraction and Poisson transmission over the time spent in communicable activities.

5.1 Random matching and Poisson transmission

At the beginning of period t, each susceptible agent chooses an activity duration a ∈ [0, 1] (e.g.,

time spent in social settings). Let ϑt ∈ [0, 1] be the fraction infectious at the start of period t.

Under random matching, a susceptible is exposed to an infectious environment with probability
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ϑt. Conditional on exposure, infection arrives according to a Poisson process with constant rate

λ > 0 over the interval of length a. Thus the conditional infection probability q(a) solves

q′(a) = λ
(
1− q(a)

)
, q(0) = 0,

with solution q(a) = 1− e−λa. The unconditional infection probability before time a is therefore

p(ϑt, a) = ϑt
(
1− e−λa

)
.

(For more generality one may replace ϑt by an increasing exposure map g(ϑt); the exposition

below is unchanged.)

For utility from activity, we use a parallel exponential form that nests diminishing marginal

utility and delivers clean comparative statics. Let v ∈ C2([0, 1]) satisfy

v′(a) = γ
(
C − v(a)

)
, v(0) = 0,

so v(a) = C
(
1− e−γa

)
. Choosing C = (1− e−γ)−1 normalizes v(1) = 1, hence

v(a) =
1− e−γa
1− e−γ , v′(a) =

γe−γa

1− e−γ .

Both p(ϑ, a) and v(a) are strictly increasing and strictly concave in a.

Local MB—MC tradeoff. Fix an aggregate state (ϑt,mt) and a type x. Under the mean-field

policy, the agent’s infection premium is

D∗(x, S∗(ϑt,mt)) := V ∗(x, S∗(ϑt,mt))−B(x),

the continuation value difference between being currently susceptible and being already in-

fected/immune. A myopic marginal extension of activity from a to a+ da yields:

Marginal benefit (MB): v′(a) da.

Marginal cost (MC): the extra infection probability p2(ϑt, a) da = ϑtλe
−λada times the con-
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Figure 2: Strong vs. mild infectious regime.

tinuation loss δ D∗(x, S∗),

MC(a;x) ≈ δ ϑtλe
−λaD∗(x, S∗) da.

Thus the first-order condition (FOC) at an interior optimum α∗(x, ϑt,mt) ∈ (0, 1) matches

Proposition 1:

v′
(
α∗
)

= δ p2

(
ϑt, α

∗)D∗(x, S∗).
Two infectious regimes. The shapes of MB and MC over a govern equilibrium behavior.

For the exponential forms above,

v′′(a)

v′(a)
= −γ, p22(ϑ, a)

p2(ϑ, a)
= −λ.

Hence the curvature comparison in Propositions 1 and 2 collapses to a comparison of the rates

γ and λ (see Figure 2):

• Mild infectious regime (λ ≤ γ). MB (v′) declines weakly faster than MC (δp2D
∗) as

a grows; the per-period objective is (weakly) concave at interior points, and the KKT

system admits an interior solution when the boundary conditions do not bind. This is

exactly the “smooth”case: agents pick a unique interior α∗(x, ϑ,m) ∈ (0, 1) determined

by MB = MC, unless pushed to a boundary.
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• Strong infectious regime (λ > γ). In this environment MC declines faster with a than

MB does. Any stationary point that solves MB = MC is a local minimum (since F ′′ > 0

at that point). Thus the maximizer must be at a boundary: α∗ ∈ {0, 1}. Comparing the
two corners yields

Fx,ϑ,m(1)− Fx,ϑ,m(0) =
(
v(1)− v(0)

)
− δ p(ϑ, 1)D∗(x, S∗),

which is strictly increasing in x because D∗ is strictly decreasing in x (Lemma 1). This

produces a unique cutoff c(ϑ,m) with bang-bang behavior:

α∗(x, ϑ,m) =

 1 if x ≥ c (ϑ,m)

0 if x < c (ϑ,m)

Why polarization is a “natural” response in discrete time? In discrete time, a small

marginal step in a need not reveal the global shape of the objective. When λ > γ, starting from

a = 0 the MC can exceed MB locally until the crossing point (a “danger zone”, see the shaded

area on Figure 2(right) for type-x′ agents), yet the global payoff at a = 1 can be strictly higher

than at a = 0 because MC decays more steeply than MB as a increases. This is why the optimal

choice jumps to a corner rather than settling at a local crossing point. The exponential case

makes this stark: v′′/v′ = −γ, p22/p2 = −λ, so λ > γ guarantees any interior crossing is a local

minimum.

5.2 Two useful variations

Endogenous transmission intensity. Suppose the Poisson rate depends on prevalence, λ =

λ(ϑ), strictly increasing in ϑ. Then

p(ϑ, a) = 1− e−λ(ϑ)a,
p22

p2

= −λ(ϑ).

For a given period t, the period-t regime (smooth vs. polarized) is governed by

smooth if γ ≥ λ(ϑt), polarized if γ < λ(ϑt).
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Because ϑt ↓ 0 along any equilibrium path, a strongly infectious phase (polarized behavior) can

endogenously transition to a mild phase (smooth interior behavior) as the epidemic wanes. If v

is linear, the cutoff logic persists each period regardless of ϑt.

Resource-based prevention decisions. Let agents devote a share ut ∈ [0, 1] of a per-period

resource to prevention (e.g., masking, filtration), reducing the instantaneous infection rate from

λ to (1− ut)λ over the period. The unconditional infection probability becomes

p(ϑt, ut) = ϑt

(
1− e−λ(1−ut)

)
.

Let the period resource cost be c(ut) := 1 − v(1 − ut) (so higher prevention reduces activity

utility). The per-period objective is

1− c(ut) + δ p(ϑt, ut)B(x) + δ (1− p(ϑt, ut))V ∗(x, S∗).

The FOC at an interior optimum is

c′(ut) = δ ϑt λ e
−λ(1−ut) D∗(x, S∗),

and the same curvature comparison applies with the map u 7→ 1− u:

d2

du2
log c′(u) Q −λ ⇐⇒ smooth (interior) vs. polarized (corner) prevention.

Equivalently, with c′(u) = v′(1− u) and c′′(u) = −v′′(1− u), the period is smooth when

c′′(u)

c′(u)
≤ λ (all u),

and polarized when the inequality reverses. The qualitative economic message is unchanged:

the side (benefit or risk) with the steeper log-slope dominates the global shape of the period

objective and determines whether behavior is interior or bang-bang.
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6 Conclusion

This paper develops a discrete-time mean-field model of epidemic behavior in which heteroge-

neous, atomless agents optimally choose communicable activity in response to an evolving infec-

tion state. We formulate the interaction as a mean-field game with an augmented state (ϑ,m)–

the current infection prevalence and the cross-sectional measure of remaining susceptibles– and

prove the existence of a pure Markov mean-field equilibrium (MFE). The existence result is

robust to general type distributions (no density is required) and accommodates relaxed policies

while delivering pure best responses on equilibrium paths.

A central contribution is a sharp characterization of equilibrium behavior via a curvature

test that compares the log-slopes of benefits and risks:

v′′(a)

v′(a)
Q p22(ϑ, a)

p2(ϑ, a)
for a ∈ [0, 1].

When the marginal utility from activity declines at least as fast as the marginal infection risk (left

inequality), equilibrium choices are smooth and satisfy the usual first-order (KKT) conditions.

When the marginal infection risk decays faster with additional activity than marginal utility

(right inequality), any interior stationary point is a local minimum and equilibrium choices are

bang—bang. In this polarized regime there exists a unique cutoffc(ϑ,m) such that more vulnerable

types optimally choose zero activity while less vulnerable types choose one. Along equilibrium

paths, as prevalence falls, the cutoff declines and the economy can transition endogenously from

polarized to smooth behavior.

We provide a transparent micro-foundation for these regimes using random matching and

Poisson transmission. With p(ϑ, a) = ϑ(1−e−λa) and v(a) = (1−e−γa)/(1−e−γ), the regime test
collapses to a comparison of rates: smooth behavior when γ ≥ λ and polarization when γ < λ.
Intuitively, a large, memoryless hazard makes infection risk front-loaded : once an agent crosses a

personal tolerance, additional activity adds relatively little risk but still yields utility– pushing

optimal choices to the corners and generating a cutoff in types without requiring any ex ante

polarization in preferences or demographics.

Our results rationalize why some epidemics exhibit sharp divides while others do not: the

same society, with the same unimodal distribution of vulnerabilities, can display polarized be-

havior if the transmission hazard is suffi ciently high relative to the curvature of activity benefits,
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and smooth behavior otherwise. The augmented-state MFE highlights that polarization is a

dynamic property: targeted data on prevalence and transmissibility (which influence p2 and p22)

can forecast shifts between regimes and thus inform timing of interventions.

The model formalizes the case for targeted measures over uniform mandates. In polarized

regimes, the equilibrium already sorts agents by vulnerability; policy can support effi cient sorting

(e.g., subsidizing low-cost protection and remote access for high-risk types, facilitating safe

activity for low-risk types) rather than suppressing it with blunt restrictions. As prevalence

recedes, the theory predicts a natural unwinding of extreme behaviors, suggesting that time-

varying, state-contingent guidance may achieve public-health goals with lower economic and

social costs. More broadly, monitoring the relative curvature in situ– via estimates of effective

contact intensity (hazard) and observed marginal utilities of activity– provides an operational

criterion for when to expect polarization and when to expect smooth adjustment.

We abstracted from learning, network structure, capacity constraints in healthcare, and

strategic externalities beyond infection (e.g., congestion in testing or treatment). Extending the

augmented-state MFE to incorporate belief updating, endogenous social links, or vaccination

would allow us to study how information and policy co-evolve with behavior. Finally, a full wel-

fare analysis– quantifying wedges between decentralized MFE and socially optimal allocations

and characterizing implementable instruments– is an important next step.

Overall, by embedding epidemic decisions in a mean-field framework and isolating the curvature-

based mechanism behind smooth versus polarized responses, the paper offers a unified explana-

tion for heterogeneous public behavior across outbreaks and a tractable set of diagnostics for

policy design.
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