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Abstract

A principal incentivizes a team of agents to work on a joint project. Building on

Winter (2004), this paper proposes a simple, efficient mechanism that implements work

as the unique outcome under any procedure of Iterative Elimination of Weakly Domi-

nated Strategies. The mechanism asks agents to choose between two public messages,

“collaborate” and “monopolize,” and the message profile decides their bonuses upon

team success. Unlike Winter (2004) and Halac et al. (2021), the equilibrium bonus

allocation is both non-discriminatory and public. Thus, efficiency need not come at

the cost of fairness nor transparency.

JEL: D23 D62 D86
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1 Introduction

A trade-off between efficiency, fairness, and transparency sits at the heart of team incentives.

To ensure everyone works hard, a cost-minimizing manager must either accept some ineffi-

ciency and treat similar workers unequally (e.g., Winter (2004)) or keep contracts private

(e.g., Halac et al. (2021)).
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But private contracts are often far from ideal. Achieving “efficient coordination”1 typi-

cally requires interdependent rewards: each worker’s compensation depends on what others

are offered. When those offers are private, a worker may not even be able to verify their

own pay terms until the work is done. Moreover, norms are shifting. Salary transparency

laws are spreading (Cullen, 2024). Organizations want open pay structures. The demand

for contracts that are transparent, fair, and still deliver effort is only growing.

This paper shows that such contracts are not only possible — they can be simple and

more robust than the alternatives. Building on the model of Winter (2004), I propose a

mechanism that keeps pay public and fair, yet achieves efficient coordination. The key is to

use signaling to coordinate effort: a worker’s public contract choice signals his future effort

and aligns beliefs through forward-induction reasoning (e.g., Ben-Porath and Dekel (1992);

Cavounidis and Park (2025)).2

The mechanism offers each worker a binary menu of contracts. After observing each

other’s choices, workers decide whether to shirk. In the unique outcome that survives Itera-

tive Elimination of Weakly Dominated Strategies (IEWDS), all workers choose the contract

that signals “I will work,” and the manager pays approximately the second-best cost upon

team success. The solution concept matters: IEWDS admits forward induction. It also

ensures the mechanism works even without common beliefs. No one is paid unfairly. Effort

is coordinated out in the “open.” And the mechanism breaks the trilemma.

To fix ideas, consider a project with two tasks: data collection and marketing design. A

manager hires Alice to collect data and Bob to design the marketing strategy. Each of them

can privately exert costly effort to increase the chance of task success. The project succeeds

only if both tasks succeed. Everyone observes the project outcome, but if it fails, no one can

tell which task went wrong. The manager’s goal is to induce both workers to exert effort as

the unique outcome under IEWDS while minimizing total payments.

1To focus on coordination, I take the second-best as the benchmark (See also Ma (1988) and Arya et al.

(1997)). A manager achieves efficient coordination if she implements the outcome all workers exert effort

at their second-best cost, i.e., the total payment that incentivizes team effort when workers believe their

teammates will also work. Workers still receive a positive rent due to hidden action.
2Cavounidis and Park (2025) is the first paper that brings the signaling effect and forward-induction

reasoning to the moral-hazard-in-teams setting.
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A natural benchmark is to reward each worker a bonus just above the second-best thresh-

old upon team success, which is just enough to incentivize effort if the other worker works

hard. This contract seems efficient and fair—it does not discriminate between symmetric

workers. But we cannot rule out coordination failure: if either worker expects the other to

shirk, the bonus falls short, and shirking becomes a best response.

My solution, which I call a collaborating mechanism, works as follows. The manager

picks an arbitrary worker, say Alice, to send a public message: collaborate or monopolize.

If Alice chooses collaborate, both she and Bob are promised a “collaborating” bonus that

is ε-close to the second-best benchmark. If Alice chooses monopolize, she is promised a

larger “monopoly” bonus, carefully chosen by the manager, while Bob receives less. After

observing the message, both privately decide whether to exert effort.

In the unique outcome under IEWDS, Alice chooses collaborate and both workers exert

effort. Why? If the monopoly bonus is large enough, choosing collaborate while planning to

shirk becomes weakly dominated by the monopoly option for Alice (“signaling constraint”).

So if she chooses collaborate, Bob infers that she intends to exert effort. This belief makes

it worthwhile for him to do the same. Knowing this, Alice will indeed choose collaborate

rather than monopolize, provided that the monopoly bonus is not too attractive (“incentive

constraint”). Since promising the team a collaborating bonus above the second-best makes

collaborate and then both work the best outcome for everyone, the manager can always find

a monopoly bonus that satisfies both constraints and coordinate efforts for free. Section 2

explains the two-agent example in detail.

Section 3 and 4 characterize a general setting and describe the N -agent mechanism.

When more than two workers signal simultaneously, coordination may break down (Ben-

Porath and Dekel, 1992). To avoid this failure, the mechanism introduces a voice hierarchy:

the manager ranks the workers arbitrarily, and a worker gets the chance to monopolize only

if all the higher-ranked workers have chosen collaborate. This voice hierarchy replaces the

payment hierarchy in Winter (2004) and serves a similar coordination role. Yet, the order

of voices—who speaks or speaks louder—does not matter even when agents are asymmetric

in effort costs or the contributions to team success.

Section 5 briefly demonstrates how the main result can be applied to improve incentive
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provision in real-world settings, including fee-splitting in legal work, credit allocation in

academia, and subcontracting.

Related Literature

This paper contributes to the literature on contracting against strategic uncertainty in team

production. In the setting of public contracting, in which all bonus offers are publicly

known, Winter (2004) provides a benchmark analysis. He studies the optimal independent

contract where agents cannot influence their own or others’ contracts. The key insight there

is that discriminatory bonuses are necessary to ensure full effort in any Nash equilibrium at

a minimum cost: a large bonus makes exerting effort a dominant strategy for one agent, so

incentivizing the other requires only a small bonus.

Cavounidis and Park (2025) extends this framework by allowing for interdependent con-

tracting, but focuses on a natural, constrained class of mechanisms—subcontracting. The

principal sets a bonus budget and delegates bonus allocation to a sequence of agents. The

authors incorporate extensive-form rationalizability (Pearce, 1984) in Nash equilibrium to

capture forward induction. Subcontracting can sometimes outperform Winter (2004)’s con-

tract, but not always. In both papers, the constraints on the mechanism space or the equilib-

rium concept push the cost above the second-best level and lead to discrimination. Building

on the subcontracting mechanism, my paper designs a public mechanism that achieves the

second-best and eliminates discrimination under IEWDS.3

When it comes to private contracting, the main finding in Halac et al. (2021) reveals

that the optimal private independent contract outperforms Winter (2004) and eliminates

discrimination by creating rank uncertainty and mutual assurance among agents. Beyond

independent contracting, the principal can approximate the second-best payoff with a mech-

anism in which agents send private messages before/after effort decisions (Ma, 1988; Arya

et al., 1997; Cavounidis and Ghosh, 2021) or a private incentive scheme where an agent’s

3Both IEWDS and extensive-form rationalizability capture forward-induction reasoning. Their relation-

ship has been discussed in specific classes of games (Battigalli, 1997; Shimoji, 2002, 2004), but remains

unclear in general. Under the optimal mechanism of this paper, the unique outcome under IEWDS is also

extensive-form rationalizable. A similar observation appears in money-burning games (Shimoji, 2002, 2004).
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bonus offer depends on the private offers of others (Halac, Lipnowski, and Rappoport, 2021).

In these papers, agents are not informed of others’ payments and messages, nor can they ver-

ify their own contractual terms before work begins.4 This lack of transparency in one’s own

contract is less common in practice. My paper provides a simple mechanism that achieves

the second-best payoff without requiring agents to work under missing contract terms.

The signaling effect, that public contract choices signal future action, is closely related

to the literature on money-burning (Kohlberg and Mertens, 1986; Van Damme, 1989; Ben-

Porath and Dekel, 1992; Hurkens, 1996; Shimoji, 2002) and cheap talk (Antić and Persico,

2023). In particular, Ben-Porath and Dekel (1992) give a pre-game money-burning option

to one player to signal their future action in a two-player game. The signaling player can

implement their preferred outcome, without actually burning money, as a unique outcome

under the maximal IEWDS procedure that deletes all weakly dominated strategies at each

stage. In the moral-hazard-in-teams setting, subcontracting works through a similar effect

(Cavounidis and Park, 2025), but grants the principal more leeway in designing the game

form and the option. My paper expands the mechanism space and optimally applies this

signaling logic to achieve efficient coordination.

Finally, this paper shows how coordination concerns can generate a new form of hierar-

chy in organizations. Organizational hierarchies are typically tied to differential pay since

monetary incentives play a key role in shaping production and allocation decisions (see e.g.,

Mookherjee (2006); Garicano et al. (2013); Winter (2004); Halac et al. (2021)). In contrast,

the mechanism here features a voice hierarchy: agents choose between contracts in a public,

hierarchical (or sequential) way. This structure facilitates multi-agent signaling and supports

coordinated effort. While differential pay exists off-path, symmetric agents receive the same

pay on-path. The hierarchy lies not really in who earns more, but in who speaks first.

4Various (sequential) mechanisms have also been explored to eliminate undesired equilibria in principal-

agent problems with hidden types (Demski and Sappington, 1984; Ma et al., 1988; Mookherjee and Reichel-

stein, 1990; Glover, 1994) and, more broadly, in contract design problems with externalities (Segal, 2003;

Genicot and Ray, 2006; Kapon et al., 2024).
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Figure 1: The game tree

s2

s1

w s

collaborate, w bc
1 − c,bc

2 − c pbc1 − c, pbc2

collaborate, s pbc1, pb
c
2 − c p2bc1, p

2bc2

monopolize, w pbm1 − c, 0 pbm
1 − c,0

monopolize, s p2bm1 , 0 p2bm1 , 0

Table 1: The reduced normal-form game

Note: In the reduced normal-form game, agent 1’s strategy s1 ∈ S1 consists of a message and an effort

decision following the message. Agent 2’s (simplified) strategy s2 ∈ S2 is an effort decision after a collaborate

message. The unique outcome under IEWDS is ((collaborate, w), w), and subgame-perfect Nash equilibria

are highlighted in bold.

2 A Two-Agent Example

A principal hires two agents for a team project. Each agent performs a task and privately

decides whether to exert effort ai ∈ {w(ork), s(hirk)} at cost c ∈ (0, 1). Effort raises the

chance of task success from p ∈ (0, 1) to 1. The project succeeds if and only if both tasks

succeed. While the project outcome is publicly observable, task outcomes are not. The

principal aims to implement team effort as a unique outcome that survives any IEWDS

procedure. Agents maximize expected payments net of the effort cost.

The collaborating mechanism works as follows. The principal arbitrarily selects one agent,

say agent 1, to choose between two public messages: collaborate or monopolize. If agent 1

chooses collaborate, both agents receive a bonus offer ε-close to the second-best level upon

project success: bci =
c

1−p
+ε for an arbitrarily small ε > 0. If agent 1 chooses monopolize, the

principal promises her a large monopoly bonus upon project success, bm1 ≥ 0, but nothing for

agent 2. The whole team will observe the message and then simultaneously decide whether

to work.

The mechanism yields a unique outcome under any IEWDS procedure: agent 1 chooses

collaborate and both agents subsequently choose work. Since work gives a negative payoff for

agent 2 following a monopolize message, for illustration purposes we omit his action in that
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branch from the game tree (Figure 1) and its purely reduced normal-form representation

(Table 1).5 Two constraints underpin the main result:

1. Signaling constraint: max{pbm1 − c, p2bm1 } > pbc1. This ensures that the monopoly

option strictly dominates (collaborate, s) for agent 1.

2. Incentive constraint: max{pbm1 − c, p2bm1 } < bc1 − c. This ensures that the monopoly

option is strictly worse than (collaborate, w) for agent 1 when agent 2 chooses work

after a collaborate message.

The signaling constraint guarantees that s1 = (collaborate, s) never survives any IEWDS

procedure. As a result, s2 = s will not survive either. The incentive constraint then rules

out both (monopolize, w) and (monopolize, s) for agent 1. The only surviving outcome is

((collaborate, w), w). Since the collaborating bonus bc1 exceeds the second-best level, i.e.,

bc1 − c > pbc1, there always exists a monopoly bonus bm1 that satisfies both constraints.

3 A General Model of Teamwork

A principal aims to incentivize a group of N agents, i ∈ N := {1, 2, ..., N}, to complete

a team project. Each agent privately decides whether to work or shirk, denoted by ai ∈

{1(work), 0(shirk)}. Work incurs a personal cost ci > 0. The team outcome — success or

failure — depends on the set of agents who choose to work. For any set of agents, J ⊂ N, let

P (J) denote the probability of team success if the agents in J work and others shirk. P (·)

satisfies two assumptions: for any J, J ′ ∈ N,

1. (monotonicity) if J ⊊ J ′, P (J) < P (J ′) ;

2. (complementarity) if J, J ′ are not nested, P (J ∪ J ′)− P (J) > P (J ′)− P (J ∩ J ′) .

The first assumption states that team success becomes more likely as more agents exert

effort. The second introduces a core source of coordination friction: an agent’s marginal

contribution is higher when more teammates also choose to work.

5The proof for Theorem 1 shows that working after being monopolized will not survive IEWDS.
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Only the team outcome is contractible. Agents maximize their expected payment net of

any effort cost. If the principal promises a bonus bi ∈ [0,∞) upon team success, agent i’s

payoff will be P ({i ∈ N : ai = 1})bi − ciai.

The principal’s goal is to induce all N agents to work while minimizing total payment.

To avoid distraction, I do not formally define a general mechanism space or the cost-

minimization problem because the paper focuses on how a particular mechanism achieves

the second-best. Instead, I introduce the concept of unique implementation under IEWDS

and characterize the second-best benchmark.

Definition 1 (Unique Implementation under IEWDS). A mechanism uniquely implements

full effort and bonus allocation b := (b1, b2, ..., bN) ∈ [0,∞)N under IEWDS, if in the reduced

normal-form representation of the induced game:

1. Every IEWDS procedure leads to the same unique outcome; and

2. On the equilibrium path of this outcome, each agent i is promised the bonus bi condi-

tional on team success, and all agents choose to work.

Definition 2 (Second-Best Benchmark). The principal’s second-best bonus for each agent

i ∈ N is bi =
ci

P (N)−P ({N/{i}}) . The second-best total bonus is
∑

i∈N bi.

No mechanism can uniquely implement full effort and a bonus allocation with
∑

i bi ≤∑
i bi. Appendix A provides the formal proof. The intuition is straightforward: If “all

agents work” is not a strict Nash equilibrium given the bonus allocation, then some IEWDS

procedure will leave a shirking outcome in play.

This second-best benchmark highlights our focus on the coordination issue. If the prin-

cipal signs a contract with each agent independently and promises each agent (slightly more

than) the second-best bonus bi upon team success, miscoordination may happen.6 No strat-

egy will be weakly dominated because the unique best response is shirk when all others

shirk. Neither IEWDS nor Nash equilibrium can eliminate the shirking outcome.

6Winter (2004) (Proposition 4) shows that offering each agent slightly more than the second-best bonus

can induce all agents to work in the unique coalition-proof equilibrium. This equilibrium concept assumes a

strong cooperative culture in the workplace.
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4 Collaborating Mechanism and Efficiency

This section starts by describing the collaborating mechanism. It can uniquely implement

full effort and any bonus allocation that does no better than the second-best benchmark

(bi > bi for all i ∈ N). By carefully designing how agents “speak” through contract choices,

the principal can eliminate coordination rents and implement a fair, transparent incentive

scheme.

4.1 Collaborating Mechanism

The principal selects a target bonus vector and ranks the agents arbitrarily. A collaborating

mechanism grants the first N − 1 agents a binary message space {collaborate,monopolize};

we refer to them as speakers. If all speakers choose collaborate, the mechanism offers each

agent the target bonus conditional on team success. If any speaker chooses monopolize,

the highest-ranked one will receive a large monopoly bonus, while all other agents receive

nothing.

Let R : N → N be an arbitrary permutation of the agents. The following discussion refers

to the agents by their identity R(i), unless specified otherwise.

Definition 3 (Collaborating Mechanism). A collaborating mechanism, denoted by C(bc,bm),

proceeds as follows:

1. Contracting stage: Each speaker i ∈ {1, 2, ..., N − 1} simultaneously sends a public

message mi ∈ M := {collaborate,monopolize}.

• If all speakers choose collaborate, each agent receives a success-contingent bonus

bci .

• If any speaker chooses monopolize, the highest-ranked speaker among them receives

a personalized monopoly bonus bmi satisfying:

max{P ({i})bmi − ci, P (ϕ)bmi } > P (N \ {i})bci (SC1)

max{P ({i, j})bmi − ci, P ({j})bmi } > P (N)bci − ci ∀j ̸= i (SC2)

max{P ({i})bmi − ci, P (ϕ)bmi } < P (N)bci − ci (IC)
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All other agents receive zero bonus.

2. Working stage: After observing the full message profile, all agents simultaneously

choose whether to work or shirk.

The constraints mirror those in the two-agent example. Constraint (SC1) ensures that

choosing monopolize weakly dominates collaborate and then shirk. Constraint (IC) ensures

that monopolize is strictly worse than collaborate if an agent expects all others to collabo-

rate and then work. The additional constraint (SC2) rules out bad behaviors off-path: it

guarantees that, if another agent works after being monopolized, a speaker strictly prefers

to seize the monopoly opportunity rather than collaborate and work.

Such a monopoly bonus vector bm exists if bci > bi for all i. When each collaborating

bonus exceeds the second-best level, constraints (SC1) and (IC) leave a nonempty set of bmi

for us to choose. By strict monotonicity of P (·), we can always raise bmi within this set to

satisfy (SC2).

Theorem 1. Given any target bonus vector b with bi > bi for all i ∈ N, the collaborating

mechanism C(bc,bm) with bc = b and any bm satisfying the constraints (SC1)-(IC) uniquely

implements full effort and bonus allocation b under IEWDS.

We now formally define strategies in the purely reduced normal-form game induced by the

collaborating mechanism. Let ai : M
N−1 → {0, 1} be the effort function, mapping the full

message profile to the effort decision of agent i . A speaker’s strategy si = (mi, ai(mi,m−i))

specifies his own message mi ∈ M and, given this message, whether to work or shirk after

observing all other messages m−i ∈ MN−2. A nonspeaker’s strategy sN = aN(m) simply

specifies whether to work or shirk after observing all messages.

Let s∗ := (s∗i )i∈N denote the outcome that, as will be demonstrated, uniquely survives

IEWDS. It consists of the following strategies. All speakers choose collaborate. Upon observ-

ing a unanimous collaborating message profile, all agents choose work. Off the equilibrium

path, any message profile that results in agent i being monopolized (i.e., receiving a zero

bonus) triggers a shirk response from agent i. Conversely, any message profile that allows

agent i to monopolize triggers a work response from agent i if P ({i})bmi − ci > P (ϕ)bmi , and
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shirk otherwise. Compared to Winter (2004)’s contract, we move discriminatory bonuses off

the equilibrium path while maintaining a “flat” structure of payments on path.

The proof has three parts. Part 1 (Lemma 1) shows that s∗ survives any IEWDS pro-

cedure because it is a strict Nash equilibrium. Part 2 (Lemma 2) proves that no agent

works after being monopolized. Part 3 finalizes the proof by showing that no other outcome

survives under IEWDS.

Lemma 1. s∗ survives any IEWDS procedure.

Proof of Lemma 1. Note first that a strict Nash equilibrium, in which each agent’s strategy

is the unique best response to the others, cannot be eliminated under any IEWDS procedure.

We therefore aim to show that s∗ is a strict Nash equilibrium.

First, suppose agent i chooses collaborate but deviates in the working stage by choosing

shirk. Since all other agents play work under s∗−i, and since bci > bi, the deviation yields

strictly lower payoff. Second, suppose agent i deviates to choose monopolize. In this case,

all other agents respond by shirking. Whether agent i works or shirks, his expected payoff

is strictly below that from playing s∗i by constraint (IC).

In both cases, s∗i delivers a strictly higher payoff than any deviation against s∗−i. Hence,

it is the unique best response.

The next part shows that working after being monopolized cannot survive IEWDS. If

such a strategy, call it si, were to survive, someone else would find it profitable to exploit

this work response, making si strictly worse than a shirk alternative. Then si must have

been eliminated under IEWDS, leading to a contradiction.

Lemma 2. Any strategy that plays work after being monopolized will not survive IEWDS.

Proof of Lemma 2. We begin with a useful observation, which follows directly from the def-

inition of IEWDS and will be used repeatedly:

Claim 1. A strategy si will not survive if there exists a surviving strategy profile s′ and an

alternative (possibly mixed) strategy σi ̸= si such that (1) si yields weakly lower payoffs than

σi against any possibly surviving strategy profiles; and (2) ui(si, s
′
−i) < ui(σi, s

′
−i).

7

7Even if σi, or any strategy in the support of σi, is deleted, we can find a surviving strategy for agent
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Suppose by contradiction that there exists a surviving strategy si which plays work after

a message profile that allows agent j ̸= i to monopolize, i.e., a message profile in which agent

j is the highest-ranked monopolizing speaker. When facing the surviving profile (si, s
∗
−ij),

monopolize gives agent j a continuation payoff strictly higher than any collaborating payoff

because max{P ({i, j})bmj − cj, P ({i})bmj } > P (N)bcj − cj by (SC2). Hence, at least one

strategy with mj = monopolize, say sj, cannot be eliminated and survives to the end.

However, when mj = monopolize survives, the work response from agent i should not

survive. Formally, consider an alternative strategy that differs from si only in that it plays

shirk after being monopolized. This strategy weakly dominates si and gives a strictly higher

payoff when facing this surviving strategy profile (sj, s
∗
−ij), in which agent i is monopolized.

By Claim 1, si will not survive.

The final step establishes the uniqueness. We begin by showing that the costly signal

collaborate is credible. The signaling constraint (SC1) ensures that collaborate and then shirk

is weakly dominated by monopolize. In particular, it is strictly worse when facing a surviving

strategy profile in which all other agents collaborate and then work. Hence, it cannot survive

regardless of the elimination order.

Once we rule out collaborate and then shirk for all speakers, the nonspeaker will work

when all speakers choose collaborate. Then, starting from the lowest-ranked speaker, each

of them anticipates that (1) all lower-ranked agents will collaborate and then work, and (2)

his own message only matters if all higher-ranked speakers choose collaborate. As such, each

speaker faces a similar trade-off as in the two-agent case and strictly prefers collaborate and

then work over monopolize.

Proof of Theorem 1. Following Lemma 2, we restrict attention to strategies in which agents

shirk after being monopolized.

Step 1 (Collaborate and then shirk will not survive). Fix a speaker i. If any higher-

ranked speaker chooses monopolize, all strategies yield identical payoffs. Now suppose all

i that weakly dominates (each of) them accordingly among the set of possibly surviving strategy profiles.

Given s′ survives and ui(si, s
′
−i) < ui(σi, s

′
−i), there exists a surviving strategy that weakly dominates si.

So si cannot survive.
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higher-ranked speakers choose collaborate, but at least one lower-ranked speaker chooses

monopolize. By constraint (SC1), choosing monopolize guarantees agent i a strictly positive

payoff, while collaborate results in zero.

Next, consider the case where all other speakers choose collaborate in s−i, but only a

subset K ⊆ N \ {i} of agents (including the nonspeaker) choose work in the second stage.

In this case, the expected payoff from playing collaborate and then shirk is P (K)bci , while

monopolize yields strictly more than P (N\{i})bci by (SC1). By monotonicity of P (·), we have

P (N \ {i}) ≥ P (K), so at least one strategy with a monopolize message weakly dominates

collaborate and then shirk, and is strictly better against the surviving profile s∗−i, in which

all other agents choose collaborate and then work.

Therefore, by Claim 1, the strategy collaborate and then shirk cannot survive.

Step 2 (Uniqueness of s∗). Once we rule out all strategies that play collaborate and

then shirk, the strategy s∗N , in which the nonspeaker chooses work following a unanimous

collaborate message profile, is the unique surviving strategy for the nonspeaker.

We now show that s∗i is the unique surviving strategy for each speaker i < N , using

a “backward” induction argument. Assume the induction hypothesis: for every agent j ∈

{i+ 1, . . . , N}, s∗j is the unique surviving strategy. We will show that s∗i will be the unique

surviving strategy for agent i.

For each speaker i < N , a possibly surviving strategy different from s∗i must have mi =

monopolize. Denote one such strategy by si. First, when facing the surviving profile s∗−i, si

gives strictly lower payoff than s∗i by constraint (SC1). Second, si deliver lower payoffs than

s∗i against any possibly surviving opponent strategies:

• If any higher-ranked speaker chooses monopolize, then both si and s∗i yield zero payoff;

• Suppose all higher-ranked speakers choose collaborate. By the induction hypothesis,

all lower-ranked agents must choose collaborate. Then, by Step 1, all opponents work

after this unanimous collaborate message. Hence, we face the same situation as in s∗−i

and si gives strictly lower payoff than s∗i .

By Claim 1, si will not survive. It follows that s
∗
i is the unique surviving strategy for agent

i. We finish the induction argument.
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4.2 Efficient Coordination and Discussion

By Theorem 1, for all ε > 0, the collaborating mechanism can uniquely implement full effort

and bonus allocation b = (bi +
ci∑
i ci

ε)i∈N under IEWDS. The total bonus (
∑

i bi) + ε ap-

proaches arbitrarily close to the second-best level. The bonus allocation is non-discriminatory:

the on-path markup for agent i, limε→0
bi−ci
ci

= 1
P (N)−P (N\{i}) −1, varies nontrivially only with

the agent’s marginal contribution to team success. We discuss two key properties of this

second-best mechanism below.

The Monopoly Option as a Signaling Device

How can speakers credibly promise to work hard in the future? They can do so by making

an upfront, public, and costly decision: forgoing the monopoly option. This act of signaling

makes it possible to coordinate effort under the approximately second-best bonus allocation.

This intuition echoes earlier work (e.g., Kohlberg and Mertens (1986), Van Damme

(1989), Ben-Porath and Dekel (1992)) in how forward induction selects equilibria in co-

ordination games. To see this, we return to the two-agent example and consider an outside

option that directly assigns some payoff to the speaker. As long as all agents work is a strict

Nash equilibrium under our target bonus allocation, we can construct an outside option that

offers less than the all agents work outcome, but more than what an agent would receive

from unilaterally deviating to shirk (see Table 2 for a formal representation). The extended

normal-form game will then have a unique surviving outcome where all agents choose to

work under the target bonus allocation.

The specific structure of this outside option and the subsequent effort decisions can be

quite flexible. For instance, a “who-to-team-up” variant of the mechanism also works: if

any speaker chooses monopolize, the highest-ranked among them proceeds alone and decides

whether to work or shirk, while the principal excludes all other agents from the project,

instead of allowing them to stay and receive zero bonus. As before, the principal can fine-

tune the monopoly bonus to achieve the second-best result.
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s2

s1

w s

collaborate, w bc1 − c1, b
c
2 − c2 pbc1 − c1, pb

c
2

collaborate, s pbc1, pb
c
2 − c2 p2bc1, p

2bc2

option z1, 0 z1, 0

Note: The table presents the (simplified) reduced normal form game when agent 1 is offered an option that

directly pays her zi > 0. Effort decisions are denoted by w(ork) and s(hirk). ((collaborate, w), w) is the

unique outcome under IEWDS if pbc1 < z1 < bc1 − c1.

Table 2: An abstract outside option in the two-agent example

Voice Hierarchy

Extending the two-agent result to a multi-agent setting is initially far from straightforward.

When multiple speakers choose monopolize, who should be granted that right? Worse yet,

when many agents try to signal their intentions simultaneously, coordination can break down.

As Ben-Porath and Dekel (1992) show, simultaneous signaling in their game may lead to an

outcome in which players burn money without achieving cooperation. While Hurkens (1996)

tackles this issue with a stronger solution concept, I twist the signaling procedure.

Recall that in our mechanism, agents speak simultaneously in the contracting stage. The

trouble with everyone talking at once motivates a hierarchical structure of our speaking rules.

Once an agent speaks, they concede the monopoly right to the next in line. Such a voice

hierarchy turns out to prevent the “voice clash” that arises in simultaneous signaling. The

order in which agents speak is quite flexible: unlike Cavounidis and Park (2025), it does not

matter who speaks or whose voice ranks higher when agents are asymmetric.

A sequential procedure yields the same results if we let agents speak in turn, and all

messages are publicly observed. Note that in the voice hierarchy, a monopolize message

takes effect only if no higher-ranked speaker chooses monopolize. This structure lends itself

naturally to a sequential mechanism. Figure 2 illustrates the game tree induced by the

sequential mechanism.

While Ben-Porath and Dekel (1992) also see the potential of a sequential signaling proce-

dure, their approach does not support pay transparency. They require each agent to observe
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Figure 2: The game tree induced by a sequential collaborating mechanism

only prior messages and “leave the scene” after sending their own. My approach differs:

everyone sees all messages. In my setting, the principal has more flexibility in designing

the off-path subgame when the outside option is chosen. It becomes unnecessary to hide

lower-ranked or subsequent messages. As a result, in contrast to other second-best mecha-

nisms (e.g., Halac et al. (2021), Cavounidis and Ghosh (2021)), such transparency lets agents

confirm their own contractual terms before deciding whether to work.

5 Examples of Applications

This paper introduces a simple, public mechanism that ensures all agents work under the

approximately second-best bonus allocation. The mechanism invites agents to send costly

messages to signal their future efforts before the team project starts. Both the messages

and the resulting bonus allocation are public information. In this way, contracting with

public negotiation procedures serves as a powerful tool to resolve coordination problems in

team projects and combat pay discrimination. Several real-life examples and applications

are discussed below.

Fee Splitting Among Lawyers

Public bonus-splitting arrangements are common in legal practice, particularly among lawyers

from different firms who collaborate on the same case (Grossbaum, 2022). These collabora-

tions often involve contingent fee matters, where payment depends in part on a successful

outcome. To avoid disputes, the American Bar Association’s Model Rule 1.5(e) requires a

written agreement: both the lawyers and the client must consent in advance to the specific
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share each lawyer will receive. Some jurisdictions go further. For example, Florida Bar rules

specify a presumptive 75/25 split between primary and secondary lawyers in contingent fee

cases, while allowing equal division by mutual agreement. These legal requirements help in-

stitutionalize transparent, pre-work bonus-splitting contracts, which help align expectations

and reduce coordination failures in team-based legal work.

Credit Allocation in Academia

Discussing authorship order early in a collaboration can also function as a bonus-splitting

contract. In economics, many papers adopt alphabetical authorship and, more recently, a

certified random authorship to signal equal contributions. Others adopt a non-alphabetical

order in which the first author often receives more credit (Laband and Tollison, 2000; Einav

and Yariv, 2006; Waltman, 2012).

My paper suggests that the option to choose the authorship rule itself can play a crucial

role in incentivizing effort in academic teams. To illustrate this, consider the following simple

model of credit allocation. Two agents start a project and expect a total credit of S ∈ (0, 1)

if the project succeeds. Agent 1 brings up the initial idea. She faces a choice: suggest a

random order, earning equal credit (1
2
S each), or propose a non-alphabetical order that gives

her full credit (S) and leaves agent 2 with none. Her goal is to motivate both agents to work.

All other aspects of the model follow the setup in Section 2. To ensure that both agents work

in the unique outcome surviving IEWDS, two constraints must hold:

max{p · S − c, p2 · S} > p · (1
2
S)

max{p · S − c, p2 · S} <
1

2
S − c

These inequalities hold if and only if S > c
p(1−p)

and p < 1
2
< 1− c

pS
.

So, authorship choice can serve as an effective coordination device under two conditions.

First, the total credit must be large enough to create room for signaling. Second, the equal

allocation of credit resulting from the random order must strike a balance. Given that

agent 2 works under equal credit but shirks otherwise, the share 1
2
must be large enough

to discourage agent 1 from taking all the credit (incentive constraint), yet small enough
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that working under full credit remains more profitable than shirking under half (signaling

constraint).

Subcontracting with Partial Centralization

Subcontracting offers another real-life example of public, interdependent contracting. Cavouni-

dis and Park (2025) studies a fully decentralized version in which the subcontractor freely

determines how to split a fixed bonus budget. Building on that, my analysis suggests that

introducing partial centralization, such as imposing a cap or a floor on how much the sub-

contractor can claim, might further bring down the cost for the principal.

Consider again the two-agent example from Section 2. In a fully decentralized subcon-

tracting mechanism, the principal sets a fixed bonus budget and delegates agent 1 as the

subcontractor, who then decides how to split the bonus budget. Regardless of the subcon-

tractor’s choice, the sum of bonuses remains fixed. It implies that, to uniquely implement the

approximately second-best bonus allocation, we must have (ignoring the ε’s in the contract)

bc1 + bc2 = bm1 + 0 ⇔ 2c

1− p
=

c

p(1− p)
.

The equality holds only when p = 1
2
. Hence, full decentralization can achieve the second-best

benchmark only in this knife-edge case.

What happens if we allow partial centralization, limiting the subcontractor’s choices?

Suppose first that p > 1
2
. Then, 2c

1−p
> c

p(1−p)
: the second-best budget required to motivate

both agents is so generous that the subcontractor strictly prefers to claim the entire amount.

A simple remedy is to impose a cap on the subcontractor’s share, roughly c
p(1−p)

, to induce

sharing.8 When p < 1
2
, the situation reverses: 2c

1−p
< c

p(1−p)
. The second-best budget is

insufficient to signal the subcontractor’s effort decision. Setting a cap no longer helps. It

is unclear whether a natural extension of the subcontracting mechanism can achieve the

second-best in this case.

8If the subcontractor can choose any bonus below the cap, a technical issue will arise due to the continuous

choice set. To uniquely implement full effort and the (approximately) second-best bonus allocation under

IEWDS, the principal can also impose a floor, for example, at 2c
1−p + ε.
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Appendix A Second-Best Benchmark

We prove a slightly more general statement: no mechanism can induce all agents to work

with an expected total bonus weakly lower than the second-best level in any outcomes that

survive IEWDS.

Suppose by contradiction that there exists a mechanism that induces all agents to work

with an expected total bonus weakly lower than the second-best level in any outcomes that

survive IEWDS. For each agent i, let xi capture the part of her strategy when participating

in the mechanism, ϕi all the (realized) information from the mechanism, and ai(xi, ϕi) her

effort decision rule if she stays. Then we can write the strategy of agent i as si = (xi, ai(·))

in the induced normal-form game.

For each agent i, let Sw
i be the set of strategies that involve working after receiving

an expected bonus offer E(bi|ϕi) ≤ bi = ci
P (N)−P (N/{i}) upon team success on some paths.

Formally,

Sw
i = {si|ai(xi, ϕi) = 1 for some (xi, ϕi) that leads to E(bi|ϕi) ≤ bi}.

For each strategy si ∈ Sw
i , we can construct an alternative strategy, denoted by ŝi, which

replaces work by shirk on the paths whenever si plays work after receiving an expected

bonus E(bi|ϕi) ≤ bi. More precisely, ŝi plays the same xi in the mechanism and exerts

the same effort ai(xi, ϕi) whenever E(bi|ϕi) > bi, but plays shirk, ai(xi, ϕi) = 0, whenever

E(bi|ϕi) ≤ bi. Denote this many-to-one mapping by h : si 7→ ŝi.

Next, we show that si is weakly dominated by ŝi = h(si). Fix any strategy profile from

opponents, s−i. ŝi and si lead to the same expected bonus E(bi|ϕi) because they differ only

in effort decisions. If agent i receives an expected bonus E(bi|ϕi) ≤ bi on path, shirk gives a

weakly higher payoff than work. If instead E(bi|ϕi) > bi on path, ŝi predicts the same effort

and thus gives the same payoff as si.

Now consider an IEWDS procedure in which we always delete strategies that play work

after an agent gets an expected bonus less than the second-best level, before we delete those

playing shirk instead. That is, whenever we can and want to delete a ‘shirking’ strategy

ŝi ∈ h(Sw
i ), we replace it with a ‘working’ strategy si in the set h−1(ŝi). This is feasible

because any strategy si in h−1(ŝi) is weakly dominated by ŝi. Since h is many-to-one, for
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any xi and ϕi that lead to E(bi|ϕi) ≤ bi, we must delete all ‘working’ strategies si with

ai(xi, ϕi) = 1, before deleting ‘shirking’ strategies ŝi with âi(xi, ϕi) = 0.

If no outcome survives under the procedure, the mechanism fails, leading to a contra-

diction. If the surviving set is nonempty, all agents must work on path in any surviving

outcome by assumption. Then the way we construct the procedure tells us that all agents

must receive an expected bonus strictly higher than bi. Otherwise, if some IEWDS proce-

dure induces a surviving outcome in which agent i receives E(bi|ϕi) ≤ bi and plays work

on path, we must have deleted the strategy ŝi = h(si) that plays shirk on the same path.

This contradicts how we construct the IEWDS procedure. However, if all agents receive an

expected bonus E(bi|ϕi) > bi in any surviving outcome, the expected total cost must exceed

the second-best level. This leads to a contradiction.
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