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Abstract: Sellers often launch a new product with different price-

quality packages (versions) when social learning is prevalent. Yet few pa-

pers explain the seller’s versioning incentive from a social learning perspec-

tive. This paper explores when and how observational learning incentivizes

a monopolist to sell different versions even in a common value setting. The

dynamic learning process sheds new light on versioning beyond traditional

explanations. The findings highlight the pivotal role of consumers’ private

information quality in determining two distinct selling strategies. In mar-

kets with noisy private signals, the seller offers a single version; with precise

signals, she adds a cheaper basic version.
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1 Introduction

Do firms profit from selling multiple versions when launching a new prod-

uct? The economic literature has provided various explanations. However,

most existing theories are static in nature, while in a digital era, new prod-

uct markets often feature a dynamic observational learning process. When

Apple launched the first iPhone in 2007, no one knew exactly how much

value it would bring to everyday life. Over time, the public came to un-

derstand the value through the growing number of users. It is such public

belief, rather than private tastes, that drives market demand in the long

run. What is the optimal menu for the firm to launch such a novel product?

When is it profitable to sell multiple versions, like iPhone and iPhone Pro,

instead of a single version?

To address these questions, this paper proposes a dynamic model in

which consumers share a common value but arrive sequentially with differ-

ent information, and offers a new justification for the multi-version policy.

In the presence of observational learning, a cheap basic version serves as

a tool to guide social learning in the short run. It allows the first batch

of consumers to try at a cheap price. A monopolist then gets to sell a

much more expensive premium version, which would not have attracted

any purchasers if it were the only option on the market. However, this

role of versioning does not always work. When the surplus from learning

is minimal and consumers have noisy private information, a single-version

menu is optimal. Otherwise, it is profitable to add a basic version.

Reward-based crowdfunding exemplifies such new product markets. It

is common practice for sellers to launch their crowdfunding campaigns with

different price-quality packages1 and consumers observe the number of pur-

1For instance, a comic book writer may offer both a digital version and a paperback
version of their new book at different prices. Similarly, a game designer might sell a
wide range of packages. Expensive ones often offer premium features to enhance the
gaming experience.
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chases (backers) for each package. The multi-version policy is also widely

adopted by firms selling online service products, such as Grammarly, Chat-

GPT, and D-ID Studio. Their motivation is precisely to let the cheap

version go viral online. Once the market recognizes its core value, it will

hopefully be ready for a premium version. With a simple and tractable

model, this paper examines a monopoly pricing and versioning problem

from the new Internet era, providing fresh insights into optimal selling

strategies in various online markets.

A monopolist releases a new product for which consumers share an

unknown binary common value. The seller aims to maximize expected

long-run average profits. She can offer a single-version or two-version menu

with exogenous, observable vertical qualities and (fixed) prices2. An infinite

number of consumers then arrive one at a time, each with a private signal

about the value. They also observe their predecessors’ decisions and obtain

public information from there. At the end of each period, they either choose

a version to buy or abstain. Consumers become increasingly informed over

time until an informational cascade occurs.3

The article first examines the optimal price in a single-product bench-

mark model, focusing on the relationship between the optimal price, long-

run demand elasticity and private signal informativeness. It then discusses

the optimal learning schemes and when to offer two versions.

In the single-product benchmark, charging a higher price increases the

margin (price effect) but reduces the probability of a buy cascade in the

limit (quantity effect). The relative magnitude of these effects, and hence

2The fixed pricing assumption applies to many real-life situations. Many firms do
not change prices frequently due to managerial inattention and brand image concerns
(Arcidiacono et al. (2020), DellaVigna and Gentzkow (2019), Reimers and Waldfogel
(2017), Phillips (2015)). Coca-Cola faced a huge backlash from consumers in 1999 when
their then CEO Ivester considered introducing a new vending machine that changed
price with the outside temperature. Most crowdfunding projects offer a static price for
each package. Grammarly’s pricing plan has remained unchanged for years.

3The observational learning part of the model is built on Smith and Sørensen (2000).
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the price elasticity of demand, is determined by the informativeness of the

private signal. With a noisy signal, the quantity effect dominates and a

low price is optimal. To stay safe, the seller may even set a low price that

triggers an immediate ‘buy cascade’4. A precise signal, however, weakens

the quantity effect, incentivizing the seller to choose a high price. In doing

so, she bets on the prior probability that the core product is good and reaps

the fruit of learning as consumers become increasingly optimistic.

The two-version model introduces another layer of trade-off. Now the

question boils down to whether to introduce a cheaper basic version. This is

because, under the assumption of zero production cost, the seller will always

keep the premium product on the market. Imposing a higher production

cost on the premium product only strengthens the seller’s incentive to offer

a basic version. The main results remain unchanged qualitatively.

As usual, adding a cheaper basic version brings information rent. The

seller must lower the premium version’s price to prevent high-belief con-

sumers from purchasing the basic version. What is novel is on the benefit

side.

Imagine consumers receive extremely precise signals. As discussed in

the benchmark case, the seller’s top priority now is to charge a high price as

long as consumers do not immediately enter a no-buy cascade. Introducing

a basic version is profitable here because it allows the first several consumers

to learn at a relatively low price. This expands the learning set and eases

the pressure of starting the process too close to a no-buy cascade, allowing

for a further increase in the premium version’s price.

A noisy signal, however, encourages the seller to stay safe by charging a

low price on the premium version. Introducing an even cheaper basic ver-

sion to the market only introduces unnecessary information rents. As such,

4Technically speaking, the buy cascade starting from the beginning is not an infor-
mational cascade but just a sequence of buy decisions.
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a single-version menu is optimal. Theorem 2 provides a threshold charac-

terization of how signal informativeness determines the seller’s decision to

expand the menu.5

The theoretical framework provides a foundation for future empirical

analysis of the interaction between observational learning and the optimal

menu. It highlights a novel relationship between private information quality

and selling strategy, which has been less studied in the literature. The next

section provides a more detailed discussion.

2 Related literature

An important early paper that examines the monopoly (fixed) pricing prob-

lem with observational learning is Welch (1992). In contrast to my model,

Welch assumes a uniformly distributed state and a finite number of agents.

Moreover, his signal structure is relatively noisy. The posterior expected

value updates so slowly that the issuer (seller) will underprice to completely

avoid a rejection cascade. My paper adds to the literature by demonstrat-

ing that when the private signal becomes precise, it is optimal to charge a

high price and risk a rejection cascade. In such cases, a multi-version menu

yields even higher profits.

Bose, Orosel, Ottaviani, and Vesterlund (2006, 2008) investigate a dy-

namic pricing problem in the informational cascade setting with finite

5As the main results highlight the role of private signal informativeness, it would
be helpful to give some real-world examples where consumers may receive private in-
formation of varying precision. The consumer’s private information is generally noisier
if the core product is innovative. In the crowdfunding context, a consumer’s private
evaluation of the first book of a new series will not be as precise as their evaluation of
the 10th book in the series. Another good example is the market for new treatments, as
discussed in (Arieli, Koren, and Smorodinsky, 2022). A doctor gathers information by
using limited free samples from pharmaceutical companies within the doctor’s patient
community. The realized success rate then gives each doctor a private signal about the
value of the new treatment. The signal tends to be more precise if doctors receive more
free samples, the samples are similar in effectiveness to the majority of products, or
their patient communities are more diversified.
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signals (binary in Bose et al. (2008)). Their setup bears similarities to

my multi-version model. Because offering multiple versions with different

prices at the outset seems to be a static alternative to dynamically adjust-

ing the price of a single version. However, dynamic pricing offers the seller

more flexibility to adjust their strategy as the learning process progresses.

This paper offers new insights into the optimal menu design in this more

constrained environment.

Several other studies have explored the optimal selling strategy in the

presence of social experimentation. For instance, Bonatti (2011) investi-

gates optimal dynamic menus for selling new experience goods to consumers

with both a common value component and private taste. Laiho and Salmi

(2021) considers a dynamic pricing problem when consumers can delay

purchases. Bergemann and Välimäki (2002)6 explores how dynamic com-

petition among firms affects pricing and entry decisions. This literature

assumes sales generate information via experimentation and simplifies the

learning process to a publicly observable Brownian motion process. The

assumption of public signal makes it difficult to discuss how private signal

quality shapes the optimal selling strategy.

Another closely related field of study is menu pricing, which traces back

to seminal works by Stigler (1963), Adams and Yellen (1976), Mussa and

Rosen (1978) and Stokey (1979). Since then, numerous articles have ex-

plored conditions under which a monopolist prefers a multiple-item menu

over a single-item menu (Salant, 1989; Anderson and Dana, 2009). A

recent paper by Sandmann (2023) highlights the role of consumers’ risk

preferences. The evolving bundling literature (Haghpanah and Hartline,

2021; Ghili, 2023; Yang, 2024) establishes conditions for the optimality of

pure and nested bundling. The conditions rely on relative values for and

6Other related papers include Bergemann and Välimäki (1997), Bergemann and
Välimäki (2000), and Bergemann and Välimäki (2006)
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sold-alone quantities of different goods. This screening literature typically

assumes consumers’ willingness to pay is exogenous. In contrast, my pa-

per features endogenously formed variations in consumers’ preferences due

to observational learning. It allows me to unravel a novel observation on

versioning and private signal quality.

Many empirical papers have already explored observational learning

in various contexts, such as kidney exchange markets (Zhang, 2010), mi-

croloan markets (Zhang and Liu, 2012), music platforms (Newberry, 2016),

and housing markets (Fan, Weng, Zhou, and Zhou, 2023). However, few

have examined the effect of consumers’ private information quality on the

seller’s pricing and versioning choices. According to Zhang and Liu (2012),

investors in microloan markets behave differently during the learning pro-

cess when they find their predecessor’s private information is more precise.

Based on this observation, the theoretical model developed here could guide

further study of optimal selling strategies in such markets, especially when

private information quality varies across different products.

3 Model: Monopoly Problem with Obser-

vational Learning

A monopolist seller plans to launch a new product. An infinite number of

short-lived agents with unit demand arrive one at a time. t ∈ {1, 2, ...,∞}.

State of the world. The product’s core content has a binary value

Vω ∈ R+ where ω ∈ Ω := {0, 1}. We assume V1 > V0 ≥ 0. Neither the

seller nor the agents observe the realized value. They share a common prior

µ1 := Pr(ω = 1) ∈ (0, 1).

Actions. The seller offers a menu with up to two options: a basic

version L = (pL, qL) with version quality qL ∈ R++, and a premium version
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H = (pH , qH) with qH ∈ (qL,∞). These version qualities are vertical,

exogenously fixed and perfectly observable.7 The seller chooses a price

schedule p := (pL, pH) ∈ R2
+ which will be fixed over time. In each period

t, an agent either buys a version or abstains. ∀t, at ∈ {L,H, r}.

Payoff. Agents receive a quasi-linear payoff from purchasing a version

of the new product: U(at, p, ω) = u(qi, Vω) − pi, for at = i ∈ {L,H}. The

function u : R2 → R is twice continuously differentiable, strictly increasing,

and strictly supermodular in (qi, Vω). Let uiω := u(qi, Vω) and ūi := ui1−ui0

denotes the utility difference across states for each version i. The outside

option (at = r) gives zero payoff.

The supermodularity assumption implies that the marginal utility from

observable version quality qi increases with the core value Vω. It is consis-

tent with many real-life scenarios. For example, consumers are willing to

pay more for physical comic book copies if they appreciate its core contents.

iPhone users would prefer a longer battery life only when they enjoy the

core design of the iPhone. Gamers become more interested in additional

game features when they appreciate its graphics and gameplay design.

The risk-neutral seller maximizes her long-run average profits

π(a,p) = lim
N→∞

1

N

N∑
t=1

[1(at = L)pL + 1(at = H)pH ]

where a := (a1, a2, ...) denotes the agents’ action profile.

Signal structure. Each agent, upon arrival, receives a private signal

st. It is i.i.d. across t and follows a differentiable distribution Gω. Following

Smith and Sørensen (2000), we map each signal realization into a ‘private

(posterior) belief’ given a flat prior, τ(s) := g1(s)
g1(s)+g0(s)

∈ (0, 1), where gω

7The observable qualities qH and qL differ from the unobservable value of the core
product Vω. Consider a comic book; both digital and physical copies share the same
core content. While the quality difference between versions is obvious, whether the core
content matches public taste is uncertain.
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denotes the density functions of st. The private belief process ⟨τt⟩ is then

i.i.d. with a differentiable conditional cumulative distribution function F ω.

Let fω denote the associated density function. We assume no private signal

fully reveals the state, which ensures F 0 and F 1 are mutually absolutely

continuous with a common support supp(F ). Also, the private belief is

bounded, i.e., co(supp(F )) := [b, b̄] ⊂ [0, 1].

Timing.

t = 0: Nature chooses the state ω, and the seller sets a price schedule

p = (pL, pH) without observing the realized state.

t = 1, 2, ...,∞: An agent arrives. She observes the price schedule p, deci-

sions of previous agents, i.e., the public action history ht := (a1, a2, ..., at−1),

and a private signal st. She then chooses a version from the menu or walks

away with nothing.

Equilibrium concept. The analysis focuses on pure-strategy perfect

Bayesian equilibrium. In cases where an optimal menu does not exist, we

will find a sequence of ε-optimal menus that converge to a well-defined

limit menu. The comparative statics results are built on the associated

limit profit maximization problem.

Definition (ε-optimal menu) For any real non-negative number ε, an

ε-optimal menu is a price schedule pε that the seller cannot obtain more

than ε in expected payoff by deviating from it.

Discussion. With unbounded private beliefs, the interesting interplay

between pricing and learning diminishes because the long-run demand8

will always equal the prior µ1. Thus, from a long-run perspective, we go

back to a standard screening problem with a size µ1 of high-value buyers

and 1 − µ1 low-value buyers. The production cost is assumed to be

zero for simplicity. Adding a non-zero constant marginal cost will not

8the limit probability of having a buy cascade
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change the main results qualitatively. While the seller explicitly sets the

prices only, the pricing decision implicitly reflects a menu choice, as the

seller can exclude a version from the market by making it unreasonably

expensive. Regarding the tie-breaking rule, we assume agents always

buy the product or choose a better version whenever indifferent. This

assumption turns out to be without loss given the private belief distribution

is atomless (see Footnote 9 and Section 4.2 for detail).

4 Long-Run Demand

This section aims to derive a long-run demand function from limit learning

outcomes. We will begin by analyzing how public and private information

influences an agent’s choice under different prices. The learning dynamics

are then characterized by a public likelihood ratio process and the long-run

demand is simply the limit probability of a buy cascade for each version.

4.1 Agents’ Problem

The expected payoff for agent t, given any prices p, public action history

ht and private signal st is

E(U(at,p, ω)|ht, st) =


(1− θt)uL0 + θtuL1 − pL, at = L

(1− θt)uH0 + θtuH1 − pH , at = H

0, at = r

where θt := Pr(ω = 1|ht, st) denotes the posterior belief of agent t after

observing previous agents’ actions and the private signal.

The seller effectively excludes a version from the market if the version’s

price is unreasonably high. Specifically when the threshold posterior for

agents to choose the premium version over rejection is higher than that of
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the basic version,

θH :=
pH − uH0

uH1 − uH0

≤ θL :=
pL − uL0

uL1 − uL0

, the basic version becomes so expensive that no one would ever consider

it.9 This results in agents behaving as they would in a single-product world.

If θL < θH ≤ 1, agents may choose any of the three actions as their

posterior belief increases. The learning process has a richer set of observable

actions. Hence, the public history can convey more information to the

subsequent agents. A longer learning phase will merge where the public

belief may exhibit more variations over time before it arrives at a cascade.

If θL ≤ 1 < θH , agents only consider the basic version. Since the

marginal production cost is zero, the total surplus from selling the premium

version is greater than that from the basic version at any posterior belief

θt. Giving up the premium version is, therefore, sub-optimal for the seller.

We follow Smith and Sørensen (2000) and use the public likelihood ratio

lt(ht) := Pr(ω=0|ht)
Pr(ω=1|ht)

to describe the learning dynamics. Agent t’s optimal

strategy is summarized as

a∗(lt, τt) =


r, θLlt > τt(1− pL + ltpL)

L, θLlt ≤ τt(1− pL + ltpL) and θ∆lt > τt(1− θ∆ + ltθ∆)

H, θ∆lt ≤ τt(1− θ∆ + ltθ∆)

where θ∆ := max{ pH−pL−(uH0−uL0)
uH1−uL1−(uH0−uL0)

, θL}.10

9 Under the current tie-breaking rule, a price schedule that equalizes the two thresh-
olds incentivizes agents to buy premium products. An alternative tie-breaking rule
could direct agents towards the basic version. In such a case, the seller would ideally
avoid offering a basic version in the first place. We can modify the model by letting the
seller choose which version to offer before choosing the prices. All the results remain
unchanged.

10Under this definition, θ∆ = θL if and only if θL ≥ θH . As a result, when θ∆ = θL,
L will never be chosen and we observe a single-version market. When θ∆ > θL, θH >
θ∆ > θL and we observe a two-version market.
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4.2 Learning Dynamics

Definition (Public Likelihood Ratio Process) The public likelihood

ratio process ⟨lt⟩∞t=1 is a stochastic process with an initial state l1 = 1−µ1

µ1
.

It evolves according to transition probabilities ρ(a|ω, lt) := Pr(at+1|ω, lt):

ρ(H|ω, lt) = 1− F ω(
ltθ∆

1− θ∆ + θ∆lt
)

ρ(r|ω, lt) = F ω(
ltθL

1− θL + θLlt
)

ρ(L|ω, lt) = max{1− ρ(H|ω, lt)− ρ(r|ω, lt), 0}

and the continuation function lt+1 = ϕ(at, lt) := lt
ρ(at|ω=0,lt)
ρ(at|ω=1,lt)

.

The state space of the public likelihood ratio can be divided into cascade

sets and learning sets. A cascade occurs at public likelihood ratio l if the

agent chooses the same action regardless of her private signal. Otherwise,

active learning happens. Let Ja := {l ∈ [0,∞]|a∗(l, τ) = a almost surely.}

be the cascade set for action a.

Notice that tie-breaking rules do not matter in the long run. Since the

private belief distribution F ω is atomless, ties occur with measure zero.

The boundaries of the cascade and learning sets, which shape the seller’s

long-run profit function, remain the same as we change the tie-breaking

rules.

For ease of notation, I will use the following notations more often. Let

β = (β̄, β), where β̄ := b̄
1−b̄

(β := b
1−b

) are the likelihood ratios of the good

state versus bad state under the best (worst) private beliefs. Let xi :=
1−θi
θi

for each version i and x∆ := 1−θ∆
θ∆

. They represent the “buy likelihood

ratios” and move up as prices drop.11

Three learning schemes, defined as types of partitions of the state space

of ⟨lt⟩∞t=1, can emerge under different menus. First, in a single-version

11The mapping from p to (xL, x∆) are one-to-one.
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scheme (x∆ = xL), we observe a rejection cascade set [β̄xH ,∞] and a buy

cascade set for the premium version (henceforth, premium cascade set)

[0, βxH ]. In between, active learning dynamics occur. See Figure 1a.

In a two-version market (x∆ < xL), we observe a rejection cascade

set [β̄xL,∞] and a premium cascade set [0, βx∆]. A basic cascade set

[β̄x∆, βxL] will emerge in between if and only if the prices are sufficiently

apart (β̄x∆ ≤ βxL). Thus, two possible learning schemes may arise in this

two-version market: a basic-out scheme (β̄x∆ > βxL, Figure 1b) and a

basic-in scheme (β̄x∆ ≤ βxL, Figure 1c). The basic version will play rather

different roles in the two schemes. In the basic-out scheme, it facilitates

learning but only in the short run. In the basic-in scheme, it can guarantee

the seller a ‘base salary’.

4.3 The Limit Learning Outcomes and Demand

When the seller maximizes the long-run average profit, what happens in

finite time does not matter. Lemma 1 shows that the average demand

converges to the limit probability of a buy cascade for each version. It

provides a closed-form formula for the long-run demand function in each

learning scheme. Let l∞ = limt→∞ lt be the limit of the public likelihood

ratio12.

Lemma 1. For any a ∈ {L,H, r},

lim
t→∞

1

t

t∑
s=1

1(as = a) = Pr(l∞ ∈ Ja) a.s.

The ex-ante cascade probabilities for each version, denoted by λ(a) :=

Pr(l∞ ∈ Ja),∀a ∈ {L,H}, are
12The existence of the limit has been prove by Smith and Sørensen (2000), see Claim

1 below.
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βxH β̄xH

βxH

β̄xH

φ(H, l)

φ(r, l)

Premium Rejection

lt

lt+1

(a) A single-version scheme (x∆ = xL)

βx∆ βxL β̄x∆ β̄xL

βx∆

βxL

β̄x∆

β̄xL

φ(H, l)

φ(L, l)

φ(r, l)

Premium Rejection

lt

lt+1

(b) A basic-out scheme (x∆ <
xL, β̄x∆ > βxL)

βx∆ β̄x∆ βxL β̄xL

βx∆

β̄x∆

βxL

β̄xL

φ(H, l)

φ(L, l)

φ(r, l)

Premium Basic Rejection

lt

lt+1

(c) A basic-in scheme (x∆ < xL, β̄x∆ ≤
βxL)

Figure 1: Three types of learning schemes

Note: the three figures plot continuation functions in different learning schemes.
In the single-version and basic-out schemes, we run into a premium buy cascade
(red shading area) when the public likelihood ratio is low; and a rejection cascade
(blue shading area) when the public likelihood ratio is low. If the two prices are
far apart, a basic cascade set (green shading area) emerges in between as in the
basic-in scheme. 14



1. λ(H) = µ1(1 + βxH)
β̄xH−l1

β̄xH−βxH
and λ(L) = 0 in the single-version

scheme;

2. λ(H) = µ1(1 + βx∆)
β̄xL−l1

β̄xL−βx∆
and λ(L) = 0 in the basic-out scheme;

3. λ(H) = µ1(1 + βx∆)
β̄x∆−l1

β̄x∆−βx∆
and λ(L) = 1 − λ(H) in the basic-in

scheme if we start from or beyond the basic cascade.

While the proof of the first part relies heavily on Smith and Sørensen

(2000), the second part uses a novel technical result (Lemma 4 in the

appendix): when the private belief distribution is differentiable, the public

likelihood ratio will hit one of the boundaries of the learning set in the

limit. The limit public likelihood ratio never jumps into the interior of

the cascade sets. This nice property pins down the support of l∞. Since

the process is a conditional martingale, E(l∞|ω) = l1. From there, we can

derive a surprisingly clean expression for the limit cascade probabilities.

5 The Optimal Selling Strategy

In this section, we start by studying the optimal pricing problem in a single-

product benchmark. This benchmark analysis highlights the connection

between private signal informativeness, learning boundaries and the long-

run demand elasticity. We then examine the optimal menu choice and

identify new economic forces emerging in the seller’s tradeoff between a

single- and two-version menu.

5.1 Benchmark: Optimal Pricing with Single Prod-

uct

This section shows how the seller’s pricing incentive changes as signal in-

formativeness improves in a single-product world. It lays the foundation
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for us to understand when and how observational learning motivates the

seller to offer two versions.

Suppose the seller offers a single product at (p, q) with q ∈ R++ exoge-

nously given. Again, let uω := u(q, Vω),∀ω ∈ {0, 1} and θp :=
p−u0

u1−u0
. Then

x = 1−θp
θp

denotes the buy likelihood ratio.

It is strictly (weakly) optimal to choose a price lower (higher) than a

level that already triggers an immediate buy (rejection) cascade. Hence, it

suffices to consider the set of x’s that satisfy βx ≤ l1 ≤ β̄x. The single-

product pricing problem simplifies to:

max
x∈[0,∞)

v0(x) := E1(π(a, p))

= µ1(1 + βx)
β̄x− l1
β̄x− βx

(u0 +
u1 − u0

1 + x
) (1)

s.t. βx ≤ l1 ≤ β̄x

Similar to the standard monopoly pricing problem, the seller’s expected

limit average profit consists of two parts: the ex-ante probability of a buy

cascade λ(p) = µ1(1 + βx) β̄x−l1
β̄x−βx

and the price p = u0 +
u1−u0

1+x
. A price

increase leads to a lower buy cascade probability (quantity effect) and a

higher margin (price effect). The next proposition shows that the quantity

effect weakens as the most convincing good and bad news become more

informative. The optimal price will increase in general and the learning

process starts further away from a buy cascade.

Proposition 1. 1. (Demand Elasticity) The price elasticity of demand

|d lnλ
d ln p

| strictly decreases in β̄ and strictly increases in β.

2. (Optimality of Immediate Buy Cascade) The Lagrangian multiplier

for the constraint x ≤ l1
β
weakly decreases in β̄ and increases in β.

3. (Optimal Price) The optimal price strictly increases in β̄ and strictly
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decreases in β at an interior solution.

The intuition rests on the underlying structure of the long-run demand.

A price change affects the demand via shifting the boundaries of the learn-

ing set. For instance, a price increase leads to a lower buy likelihood ratio

x, and shifts the boundaries downwards relative to the initial belief l1.

The process then starts closer to a rejection cascade, and the long-run buy

cascade probability drops.

Signal informativeness determines how responsive the demand is to a

price change. The boundaries take a multiplicative form of the likelihood

ratio of private belief bounds and the buy likelihood ratio x. Now consider

two hypothetical cases with extreme signals. Around the informative limit,

β̄ (β) approaches infinity (zero). A price change barely shifts the learning

set. Nor does the relative position of the initial belief change much. In-

tuitively, too precise information means the seller will need a large price

reduction to ‘nudge’ the same amount of consumers to buy. The quantity

effect is thus minimal relative to the price effect.

Conversely, a nearly uninformative signal implies belief updating will

be small and the distance between β’s shrinks. Even a small price change

produces a notable shift of the initial belief’s position in the learning set,

resulting in a relatively large quantity effect.

A reverse relationship between signal precision and the optimal price

arises if an immediate buy cascade is optimal. As the most convincing bad

news becomes more informative, the seller must charge a lower price to

convince consumers with the worst private signal to buy.

5.2 No Intermediate Cascade

Back to the two-version world, designing the menu in the presence of obser-

vational learning is equivalent to choosing a pair of (a) a learning scheme
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and (b) at which position to start the process.

Some pairs of learning schemes and initial positions can be easily ruled

out. For instance, starting below the basic cascade set in the basic-in

scheme is strictly dominated by adopting a single-version scheme. The

former ends in either a rejection or basic cascade, while the latter results

in either a rejection or premium cascade. But a premium cascade is more

profitable than a basic cascade as selling a premium product generates a

larger total surplus. For the remaining possibilities, we can write the seller’s

problem as follows:

1. Single-version scheme:

max
xH≥0

vH(xH) := µ1(1 + βxH)
β̄xH − l1

β̄xH − βxH

(uH0 +
ūH

1 + xH

) (2)

s.t. x∆ = xL, βxH ≤ l1 ≤ β̄xH

2. Basic-out scheme:

max
xL,x∆≥0

v(xL, x∆) := µ1(1 + βx∆)
β̄xL − l1

β̄xL − βx∆

(uH0 +
ūL

1 + xL

+
ūH − ūL

1 + x∆

)

s.t. x∆ < xL, β̄x∆ > βxL and βx∆ ≤ l1 ≤ β̄xL (3)

3. Basic-in scheme (starting between a basic and premium cascade):

max
xL,x∆≥0

vL(xL, x∆) := uL0 +
ūL

1 + xL

+

µ1(1 + βx∆)
β̄x∆ − l1

β̄x∆ − βx∆

(uH0 − uL0 +
ūH − ūL

1 + x∆

)

s.t. x∆ < xL, β̄x∆ ≤ βxL and βx∆ ≤ l1 ≤ β̄x∆ (4)

Figure 2 plots the constraint sets of the three learning schemes in the

buy likelihood ratio space (xL, x∆). x∆ = xL represents the single-version
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x∆ = xL
x∆ =

β

β̄
xL

l1
β̄

l1
β

l1
β̄

single-version
basic-out
basic-in

xL

x∆

Figure 2: Three learning schemes in (xL, x∆) space.

scheme. β̄x∆ = βxL separates the basic-in and basic-out scheme.

The next result presents two conditions that ensure the suboptimality

of a basic cascade.

Lemma 2 (No Intermediate Cascade). If

u(qL, V0) = 0, or,
∂

∂qL
ln

u(qL, V0)

u(qL, V1)− u(qL, V0)
≥ 0, (5)

any prices that implement the basic-in scheme and start the process between

a basic and premium cascade are strictly dominated by some prices that

implement the single-version scheme.

In words, the second no-intermediate-cascade condition (5) requires that

a one percentage increase in the basic quality induces a higher percentage

increase in consumers’ utility from consuming the basic product in the

bad state than their utility difference across states. A large class of utility

functions satisfy the condition. For instance, any multiplicatively separable

functions u(·, ·) fall into this category.

What are the gains and losses when switching from a single-version

scheme to a basic-in scheme that starts beyond the basic cascade set? The

switch secures a ‘base’ profit from the basic cascade. However, the seller
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must concede information rents to future high-belief premium version buy-

ers. The premium price must be sufficiently low to prevent them from

deviating to the basic version.

Whenever the condition (5) holds, such a switch is never optimal for

any possible qL < qH . For small enough qL, the base profit is too low

to cover the losses from the information rent. When the basic quality is

high enough, the optimal basic-in profit becomes increasing in the basic

quality and obtains its upper bound at qL = qH . But as qL approaches

qH , the information rent becomes so large that most profits come from

the basic version buyers. The seller essentially kicks off the process with

an immediate basic cascade. This upper-bound profit, however, can be

achieved with an immediate premium cascade in a single-version scheme.

5.3 Existence of an Optimal Menu

The existence of an optimal menu can be problematic with such a frag-

mented objective function. It turns out that anything within the basic-out

region of Figure 2 is either dominated by the boundary above (x∆ = xL)

or the one below (x∆ = βxL/β̄). The latter happens because widening the

price gap between versions helps minimize the information rent. But we

can never reach the lower constraint. A basic cascade occurs immediately

once we push the constraint to equality, causing the profit to jump discon-

tinuously to the basic-in form. It is, however, possible to find an ε-optimal

menu.

Theorem 1. An ε-optimal menu exists. Furthermore, the optimal learn-

ing scheme is either a single-version scheme, with a unique optimal menu
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defined by xH = x∗
1 where x∗

1 solves the single-version problem

max
x≥0

v1(x) = µ1(1 + βx)
β̄x− l1
β̄x− βx

(uH0 +
ūH

1 + x
) (6)

s.t. βx ≤ l1 ≤ β̄x

; or a basic-out scheme, in which case we can find a sequence of ε-optimal

menus that converges to (xL, x∆) = (x∗
2,

β

β̄
x∗
2) where x∗

2 solves the ‘limit’

profit maximization problem at the binding basic-out constraint:

max
x≥0

v2(x) = µ1(1 +
β2

β̄
x)

β̄x− l1

β̄x− β2

β̄
x
(uH0 +

ūL

1 + x
+

ūH − ūL

1 +
β

β̄
x
) (7)

s.t.
β2

β̄
x ≤ l1 ≤ β̄x

The objective function in the basic-out scheme is twice continuously dif-

ferentiable within the basic-out constraint set. Therefore, the comparative

statics of the optimal menu structure based on the limit basic-out problem

provide a good approximation of the changes in the ε-optimal menus for

sufficiently small ε.

5.4 Why Two Versions: The Role of Signal Informa-

tiveness

Without any production cost, keeping a premium version in the market

is always optimal. The seller’s problem then boils down to whether to

introduce a cheaper basic version. Let v∗1 be the value function of the

single-version problem and v∗2 be the value function of the limit basic-out

problem.13 The first result of this section gives a sufficient and necessary

condition for a single-version menu to be optimal for all possible signal

13These value functions vary with all the primitives: b̄, b, µ1, u, qH , qL, V0, V1. We
suppress unnecessary parameters to simplify notations throughout the rest of the paper.

21



precision. If the condition fails, a two-version menu is optimal around the

informative limit while a single-version menu remains optimal around the

noisy limit.

Lemma 3. Assume condition (5) holds. v∗2(b̄, b) < v∗1(b̄, b) for all possible

b ∈ (0, 1
2
) and b̄ ∈ (1

2
, 1) if

µ1u(qH , V1) ≤ u(qH , V0). (8)

Otherwise, there exists δ > 0 such that for any b̄ ∈ (1
δ
,∞) and b ∈ (0, δ),

v∗2(b̄, b) > v∗1(b̄, b); and δ′ > 0 such that for any b̄ ∈ (1
2
, 1
2
+ δ′) and b ∈

(1
2
− δ′, 1

2
), v∗2(b̄, b) < v∗1(b̄, b).

When the expected surplus from learning the state is limited, excluding

the basic option is more profitable regardless of signal informativeness. This

is intuitive in the case of fully informative or unbounded private signals.

Either we let consumers learn, bet on the prior probability of a good core

product, and extract all the surplus from premium version buyers. Or we

minimize the risk by inducing an immediate buy ‘cascade’ with a low price.

Comparing profits in the two scenarios delivers the single-version condition

(8).

What is less intuitive is why a single-version scheme remains optimal

as the private signal becomes less precise. The rationale relates to the

seller’s incentive in the single-product benchmark. As the signal becomes

noisy, long-run demand becomes more responsive to price and a lower price

is optimal. As a result, if triggering an immediate buy ‘cascade’ with a

cheap premium version is optimal around the informative limit, the strategy

must remain optimal for all other possible signal precisions. This kills the

versioning incentive since adding a basic version only reduces the profit by

introducing information rents.
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Theorem 2 (Versioning). Assume the no-intermediate-cascade condition

(5) holds and the single-version condition (8) fails.

For any b ∈ (0, 1
2
), there exists a threshold b̄∗ ∈ (1

2
, 1) such that v∗2(b̄) ≥

v∗1(b̄) if and only if b̄ ≥ b̄∗. Likewise, fixing any b̄ ∈ (1
2
, 1), there exists a

threshold b∗ ∈ (0, 1
2
) such that v∗2(b) ≥ v∗1(b) if and only if b ≤ b∗.

Theorem 2 presents a threshold property of how signal informativeness

affects the optimal number of menu options. The seller will add a cheaper

basic version to the menu if and only if the private signal informativeness

exceeds a threshold, in the sense that the most convincing good and bad

news is sufficiently informative.

From a technical perspective, discussing how the optimal menu struc-

ture changes with signal informativeness will be a non-monotone compar-

ative statics analysis. We want to show that the optimal solution (xL, x∆)

moves from the single-version constraint to the basic-out constraint, as the

private signal becomes more precise, but never switches back. It is difficult

to directly compare value functions in the two single-variable problems (6)

and (7), due to the lack of explicit solutions and differing constraint sets.

Instead, we aim to prove that the first-order partial derivative of the basic-

out value function with respect to β̄ or β exceeds that of the single-version

value function, whenever the two value functions are equal.

The key step is to introduce a modified basic-out problem. Consider

a marginal increase in β̄. Instead of letting β̄ change in both the profit

function (direct effect) and through the binding basic-out constraint (in-

direct effect), I shut down the indirect effect by fixing the β̄’s that enter

into the profit function in (7) via the basic-out constraint at a level that

equates the two value functions. This indirect effect expands the basic-out

constraint set, and thus killing the effect never works against our goal. So

we can work with the modified value function, which significantly simplifies

the problem.
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Intuitions. Why is it optimal to add a cheap basic version only when the

private signal is informative?

On the cost side, a cheaper basic version forces the seller to leave

information rents to premium version buyers. The gap in the highest

possible premium price in the single-version scheme (6) and the basic-

out scheme (7) demonstrates this information rent: p1H(
l1
β̄
) − p2H(

l1
β̄
) =

(ūH − ūL)(
1

1+
l1
β̄

− 1

1+
l1
β

) > 0. This rent increases as the private signal

becomes more informative.

On the benefit side, a cheap basic version relaxes the ‘no-immediate-

rejection-cascade’ constraint, allowing the seller to charge a high premium

price that would have caused an immediate rejection cascade if she offered a

single premium version. A two-version menu essentially stretches the learn-

ing set towards lower beliefs so the first several low-belief agents can try

the new product at a low cost. The seller then extracts more surplus from

high-belief buyers by lifting the premium version price without advancing

the onset of a rejection cascade.

This role of the basic version works, however, only when the private sig-

nal is sufficiently informative. An informative signal weakens the quantity

effect and incentivizes the seller to lift the premium version price rather

than lower it to hedge against the rejection cascade risk. With a noisy

signal, however, a strong quantity effect makes the latter more profitable.

The seller prefers a low price in the first place. Hence, the basic version

does not work. Intuitively, there’s no point in providing a cheaper option

if the seller already sells an affordable premium product.

An alternative perspective to look at the result is that adding a cheap

basic version rotates the long-run demand function clockwise. While I

cannot show the premium price as a function of the long-run demand λ

rotates, Lemma 5 proves a single-crossing property of ‘pseudo prices’ as

functions of the conditional probability λ(H|ω = 1): The pseudo premium
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price function of a two-version (basic-out) menu crosses that of a single-

version menu only once and from above. Hence, the optimal two-version

menu outperforms the optimal single-version menu only when the ‘price’

effect is much stronger than the ‘quantity’ effect.14

6 Concluding Remarks

This paper investigates the optimality of a multi-version menu in new prod-

uct markets with observational learning. In such a scenario, a cheaper basic

version can take two possible roles. First, it can secure a ‘base’ profit if the

menu implements a learning process ending with either a basic cascade or

premium cascade. Second, the basic version can facilitate social learning

in the beginning but disappears in the long run. It postpones the onset of

a rejection cascade and allows the seller to charge a higher price over the

premium version. So she can reap the fruit of learning when the market

recognizes its value. Lemma 2 shows the first role does not work even if

the seller cares about long-run profit.

Another unique insight of the paper is that private signal informative-

ness affects the price elasticity of long-run demand, leading to qualitatively

different selling strategies. In a market with noisy private information, the

seller offers a single cheap premium version. When consumers arrive with

precise private information, the second role of the basic version works and

adding it to the menu becomes optimal.

From an applied perspective, the conditions identified in Lemma 2,

Lemma 3, and Theorem 2 allow us to obtain sharp predictions over when

we will see more versioning of the kind that aims to facilitate observational

learning, in addition to those aiming to screen different types of consumers.

14Johnson and Myatt (2006) has a very nice discussion on how demand rotations can
lead to versioning. The interpretation here has a subtle difference: adding a version
leads to demand rotation rather than the other way around.
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Appendices

Appendix A Proofs

A.1 Proof of Lemma 1

To start with, let me present some results on belief convergence and action

convergence. Most of them have been proved in Smith and Sørensen (2000).

Then I will prove Lemma 4, which characterises the support of the limit

public likelihood ratio. As a final step, I will show how to derive the limit

cascade probabilities.

Claim 1. Conditional on state ω = 1, the public likelihood process ⟨lt⟩∞t=1 is

a martingale. Assume ω = 1. The public likelihood ratio converges almost

surely to a random variable l∞ = limt→∞ lt ∈ [0,∞). Also, a cascade will

happen in the limit.

Likewise, conditional on state ω = 0, the process of the reciprocal of

⟨lt⟩∞t=1 is a martingale. Assume ω = 0. The inverse public likelihood ratio

converges almost surely to a random variable l̃∞ ∈ [0,∞). A cascade will

happen in the limit.

The first part of the claim has been proved in Smith and Sørensen

(2000) (see their Lemma 3 and Theorem 1 (a)). The proof for the second

part follows suit by replacing lt with l̃t := 1/lt and conditioning on the

bad state ω = 0. The inverse public likelihood ratio process is formally

defined by: (1) an initial state l̃1 = µ1

1−µ1
and (2) transition probabilities
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ρ(a|ω, l̃t) := Pr(at+1|ω, l̃t):

ρ(H|ω, l̃t) = 1− F ω(
θ∆

l̃t(1− θ∆) + θ∆
)

ρ(r|ω, l̃t) = F ω(
θL

l̃t(1− θL) + θL
)

ρ(L|ω, l̃t) = max{1− ρ(H|ω, l̃t)− ρ(r|ω, l̃t), 0}

and the continuation function l̃t+1 = ϕ(at, l̃t) := l̃t
ρ(at|ω=1,l̃t)

ρ(at|ω=0,l̃t)
.

The corollary of Lemma 3 in Smith and Sørensen (2000) shows action

convergence almost surely obtains if the private belief distribution is atom-

less. Combined with the claim above, it is easy to see that 1
t

∑t
s=1 1(as = a)

converges almost surely to Pr(l∞ ∈ Ja).

The next Lemma shows the public likelihood ratio will almost surely

hit one of the two boundaries of the learning set in the limit.

Lemma 4. The limit public likelihood ratio has a binary support if F ω is

differentiable. supp(l∞) = {l1, l2} where l1 and l2 are the boundaries of the

learning set from which we start. Similarly, supp(l̃∞) = {l̃1, l̃2} where l̃1

and l̃2 are the boundaries of the learning set from which we start.

Proof. Let’s consider the public likelihood ratio process ⟨lt⟩∞t=1. The proof

for the reciprocal process ⟨l̃t⟩∞t=1 is analogous. I will first prove the statement

is true with two actions and then move to the case of three actions. As you

will see, it is easy to extend the result to the case with any finite number

of actions. The key idea is to show that the continuation function ϕ(a, l),

as defined in 4.2, never jumps out of the boundaries when we start from

within the learning set. Given any θ ∈ [0, 1], let τ(l) = lθ
1−θ+lθ

represent

a threshold private belief in the agent’s optimal strategy. Denote the two

actions by a1 and a2. The continuation function for each action and the
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boundary likelihood ratios of its associated cascade set must satisfy

ϕ(a1, l) = l
1− F 0(τ(l))

1− F 1(τ(l))
, ϕ(a2, l) = l

F 0(τ(l))

F 1(τ(l))

l1 = ϕ(a1, l1) = β̄
1− θ

θ
, l2 = ϕ(a2, l2) = β

1− θ

θ

We want to show (1) ϕ(a1, l) ≥ l1,∀ l ∈ (l1, l2) and (2) ϕ(a2, l) ≤ l2,∀

l ∈ (l1, l2). I will only prove the first statement here. A similar argument

works for the second. Suppose by contradiction ϕ(a1, l) < l1 for some

l ∈ (l1, l2) . Since the private belief distributions F ω is atomless, ϕ(a1, ·) is

continuous on [l1, l2]. So we can find some l∗ ∈ (l1, l2) such that ∂ϕ(a1,l∗)
∂l

< 0

and ϕ(a1, l
∗) = l1. The following analysis aims to show ∂ϕ(a1,l∗)

∂l
≥ 0, which

then leads to a contradiction.

By definition of ϕ, ϕ(a1, l
∗) = l1 implies l∗ 1−F 0(τ(l∗))

1−F 1(τ(l∗))
= l1. Let τ ∗ :=

τ(l∗). We have

f 0(τ ∗)

f 1(τ ∗)
=

1− τ ∗

τ ∗
=

l1
l∗β̄

=
1− F 0(τ ∗)

1− F 1(τ ∗)

1

β̄
.

The first equation follows from Lemma A.1 (a) in Smith and Sørensen

(2000). The second follows from the definition of τ(l) and l1. Rearrange

the equation and we have f0(τ∗)
1−F 0(τ∗)

= f1(τ∗)
1−F 1(τ∗)

1
β̄
.

∂ϕ(a1, l
∗)

∂l
=

(1− F 0(τ ∗))

(1− F 1(τ ∗))
[1 + τ ∗(1− τ ∗)(

f 1(τ ∗)

1− F 1(τ ∗)
− f 0(τ ∗)

1− F 0(τ ∗)
)]

=
(1− F 0(τ ∗))

(1− F 1(τ ∗))
[1 + τ ∗(1− τ ∗)(β̄ − 1)

f 0(τ ∗)

1− F 0(τ ∗)
)]

≥ 0. (because β̄ > 1)

Now let’s consider the case of three actions {a1, a2, a3}. Assume we

have cascade sets for a1 and a3. Let the boundaries of the learning set be

l1 = ϕ(a1, l) and l3 = ϕ(a3, l) > l1. Suppose also 1 > τ1 := lθ1
1−θ1+lθ1

>
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τ2 := lθ2
1−θ2+lθ2

> 0 for some (θ1, θ2) ∈ [0, 1]2 . An agent chooses a1 if they

receive a private belief τ ≥ τ1; a3 if τ < τ2; a2 if τ2 ≤ τ < τ1. Then the

continuation functions are

ϕ(a1, l) = l
1− F 0(τ1(l))

1− F 1(τ1(l))

ϕ(a2, l) = l
F 0(τ1(l))− F 0(τ2(l))

F 1(τ1(l))− F 1(τ2(l))

ϕ(a3, l) = l
F 0(τ2(l))

F 1(τ2(l))

Repeat the same steps as in the above two-action proof and we have, for

all l ∈ (l1, l3), (1) ϕ(a1, l) ∈ (l1, l3) and (2) ϕ(a3, l) ∈ (l1, l3). Intuitively, a

belief update following the middle action should be smaller than that from

extreme actions. The last part of the proof shows ϕ(a1, l) < ϕ(a2, l) <

ϕ(a3, l) whenever the continuation functions are well-defined at l ∈ (l1, l3)
15.

We can prove a slightly more general statement:

F 0(τ ′′)− F 0(τ ′)

F 1(τ ′′)− F 1(τ ′)
<

F 0(τ ′)− F 0(τ)

F 1(τ ′)− F 1(τ)
,∀0 ≤ τ < τ ′ < τ ′′ ≤ 1. (9)

Because f0(τ)
f1(τ)

= 1−τ
τ
, we have F 0(τ ′′)−F 0(τ ′) =

∫ τ ′′

τ ′
1−τ
τ
dF 1 < 1−τ ′

τ ′
(F 1(τ ′′)−

F 1(τ ′)). Similarly, F 0(τ ′)−F 0(τ) > 1−τ ′

τ ′
(F 1(τ ′)−F 1(τ)). Hence, the left-

hand side of equation 9 < 1−τ ′

τ ′
< its right-hand side.

Finally, we derive the limit cascade probabilities. As an illustration, I

will present how to derive the ex-ante cascade probabilities in the single-

version scheme. The other cases are similar.

Let lr = β̄xH and lH = βxH denote the boundaries of the learning set for

the public likelihood ratio process and 1/lr and 1/lH will be those for the in-

verse public likelihood ratio process. By the Dominated Convergence Theo-

rem, the conditional premium cascade probabilities λ(H|ω) := Pr(l∞ ∈ JH)

15That is, when ρ(a|ω, l) > 0.
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satisfy

E(l∞|ω = 1) =λ(H|ω = 1)lH + (1− λ(H|ω = 1))lr = l1

E(l̃∞|ω = 0) =λ(H|ω = 0)
1

lH
+ (1− λ(H|ω = 0))

1

lr
=

1

l1
.

Hence, the ex-ante premium cascade probability is

λ(H) = µ1λ(H|ω = 1) + (1− µ1)λ(H|ω = 0) = µ1(1 + βxH)
β̄xH − l1

β̄xH − βxH

.

A.2 Proof of Proposition 1

Following Lemma 1, it is easy to establish the seller’s problem as in 1.

Note that lnλ = lnµ1 + ln(1 + βx) + ln(β̄x− l1)− ln(β̄ − β)− lnx and

ln p = ln(u0 +
u1−u0

1+x
). Thus, we have

|d lnλ
d ln p

| = |
(

β

1+βx
+ β̄

β̄x−l1
− 1

x
)dx

− u1−u0

(1+x)2
1

u0+(u1−u0)/(1+x)
dx

|

=
1

u1 − u0

(1 + x)(u0x+ u1)[
1

1
β
+ x

+
1

x− l1
β̄

− 1

x
]. (10)

It’s easy to see |d lnλ
d ln p

| strictly decreases (increases) in β̄ (β).

Now let us look at the optimal price in problem 1. Since the objective

function is continuous and nonnegative on the feasible set, it is without

loss to work with ln v0. The first-order derivative of ln v0 with respect to x

is
∂ ln v0
∂x

=
β

1 + βx
+

β̄

β̄x− l1
− 1

x
− u1 − u0

(1 + x)(u0x+ u1)
(11)

Note that ∂ ln v0
∂x

approaches infinity as x → l1
β̄
+0 (close to an immediate

rejection cascade). Thus, x ≥ l1
β̄
never binds.

Fix any β ∈ (0, 1). ∂ ln v0
∂x

strictly decreases in β̄ for all x > l1
β̄
. The

optimal buy likelihood ratio x∗ must be weakly decreasing in β̄ (strictly so
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if we have an interior solution). Equivalently, the optimal price goes up as

β̄ increases.

Fix any β̄ ∈ (1,∞). ∂ ln v0
∂x

strictly increases in β for all x > 0. It has two

implications. First, the interior solution strictly increases in β. Second, it

is more likely to hit the boundary x ≤ l1
β
. When that happens, x∗ = l1

β

strictly decreases in β. Therefore, as β decreases from 1 to 0, the optimal

buy likelihood ratio x∗ increases (or the price drops) until the seller finds

it optimal not to trigger an immediate premium cascade. From then on,

the optimal buy likelihood ratio decreases and the optimal price goes up.

A.3 Proof of Lemma 2

Notice that the basic-in constraint (β̄x∆ ≤ βxL) binds in the basic-in prob-

lem (4). Otherwise, the seller can always increase her payoff by decreasing

xL without violating any other constraints. Plug the constraint into the

objective function and we have the following optimization problem:

max
x

vL(
β̄

β
x, x; qL) subject to

l1
β̄

≤ x ≤ l1
β

(12)

Let x∗(qL) denote the solution to this program and v∗L its value function.

v∗H denotes the value function for problem (2).

Define the difference between the basic-in profit vL(
β̄
β
x, x; qL) and the

single-version profit vH(x) as

D(x, qL) := vL(
β̄

β
x, x; qL)− vH(x) (13)

= uL0[1− µ1(1 + βx)
β̄x− l1
β̄x− βx

] + ūL[
1

1 + β̄
β
x
− µ1(1 + βx)

β̄x− l1
β̄x− βx

1

1 + x
]

for x ∈ [ l1
β̄
, l1
β
].

Here are some preliminary properties ofD that I will use in the following
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steps. Let m0(x) := 1 − µ1(1 + βx) β̄x−l1
β̄x−βx

and m1(x) := 1

1+ β̄
β
x
− µ1(1 +

βx) β̄x−l1
β̄x−βx

1
1+x

. So D(x, qL) = uL0m0(x) + ūLm1(x).

1. It it easy to show that m0(x) ≥ 0, ∂m0

∂x
< 0 and ∂2m0

∂x2 > 0 for x ∈

[ l1
β̄
, l1
β
].

2. Note also that m1(x) = 1
1+x

[ 1+x

1+ β̄
β
x
− µ1(1 + βx) β̄x−l1

β̄x−βx
]. Inside the

bracket is a function strictly decreasing in x. Hence, ∂m1

∂x
< 0 when-

ever m1(x) ≥ 0.

The main proof assumes the second condition ( ∂
∂qL

ln u(qL,V0)
u(qL,V1)−u(qL,V0)

≥

0) holds. Then it will be rather straightforward why u(qL, V0) = 0 also

works. I will briefly comment on this at the end of the proof.

Step 1: D(x, qL) > 0 ⇒ ∂D
∂qL

= ∂vL
∂qL

> 0 for all (x, qL) ∈ R2
++.

Note first that D(x, qL) > 0 ⇔ m1(x) ≥ −uL0m0(x)
ūL

.

∂D

∂qL
=

∂vL
∂qL

(
β̄

β
x, x; qL)) =

∂uL0

∂qL
m0 +

∂ūL

∂qL
m1

>
∂uL0

∂qL
m0 −

∂ūL

∂qL

uL0m0

ūL

= m0uL0[

∂uL0

∂qL

uL0

−
∂ūL

∂qL

ūL

] = m0uL0
∂

∂qL
ln

uL0

ūL

≥ 0

The last inequality follows from our second no-intermediate-cascade condi-

tion.

Step 2: ∂D
∂x

(x, qL) ≥ 0 ⇒ D(x, ql) < 0 for all (x, qL) ∈ [ l1
β̄
, l1
β
]× [0, qH ].

Fix any qL ∈ [0, qH ]. To begin with, I would like to show m′
1(x) > 0 ⇒

m′′
1(x) > 0. Suppose m′

1(x) > 0. Consider ln(m′
1(x)) = − ln β̄

β
+ 2 ln(1 +

β̄
β
x) − ln(β̄β + l1

x2 ) + ln(1 + βx) + ln(β̄x − l1) − lnx − ln(1 + x). Then,

∂
∂x
[ln(m′

1(x))] =
2

β

β̄
+x

+ 2l1x−3

β̄β+
l1
x2

+
β

1+βx
+ β̄

β̄x−l1
− 1

x
− 1

1+x
> 0 because the first

term 2
β

β̄
+x

is obviously higher than 1
1+x

and the third term β̄
β̄x−l1

> 1
x
. It

follows that m′′
1(x) > 0 whenever m′

1(x) > 0.
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As a result, whenever ∂
∂x
D(x, qL) = uLm

′
0(x) + ūLm

′
1(x) > 0, given

the properties of m0, we must have m′
1(x) > 0 and thus ∂2D

∂x2 (x, qL) =

uLm
′′
0(x) + ūLm

′′
1(x) > 0. It implies that ∂D

∂x
keeps strictly increasing after

it turns positive for the first time. Let x̂ := inf{x : ∂D
∂x

≥ 0}. If x ∈

[x̂, l1
β
], D(x, qL) < D( l1

β
) = ūLm1(x). But ∂D

∂x
≥ 0 ⇒ m′

1(x) > 0 (the first

preliminary property 1) and hence m1(x) < 0 (following the premilinary

property 2). So D(x, qL) < 0 for all x ∈ [x̂, l1
β̄
].

Step 3: There exists q̂L ∈ [0, qH ] such that (1) for all qL ∈ (0, q̂L),

D(x∗(qL), qL) < 0; (2) for all qL ∈ (q̂L, qH), vL(x
∗(qL), qL) ≤ vL(x

∗(qH), qH) ≤

vH(
l1
β
).

Let us start with proving the following statement: D(x∗(qL), qL) ≥

0 ⇒ dD
dqL

(x∗(qL), qL) = ∂D
∂qL

(x∗(qL), qL) +
∂D
∂x

(x∗(qL), qL)
dx∗

dqL
(qL) > 0. The

contrapositive of the result in step 2 tells us ∂D
∂x

< 0 when D ≥ 0. For any

(x, qL) such that D(x, qL) ≥ 0,

∂2vL
∂qL∂x

(x, qL) =
∂uL0

∂qL
(qL)m

′
0(x) +

∂ūL

∂qL
(qL)m

′
1(x)

<

∂uL0

∂qL

uL0

(uL0m
′
0(x) + ūLm

′
1(x)) =

∂uL0

∂qL

uL0

∂D

∂x
< 0.

The first inequality follows from the second no-intermediate-cascade condi-

tion. The second inequality follows from the assumption that u is strictly

increasing. Also, when D(x∗(qL), qL) > 0, all the constraints are slack

except the basic-in constraint in problem (12). By the Implicit Function

Theorem, dx∗

dqL
(qL) < 0. Combining with step 1 we know dD

dqL
(x∗(qL), qL) =

∂D
∂qL

+ ∂D
∂x

dx∗

dqL
> 0 whenever D(x∗(qL), qL) ≥ 0.

It follows that there exists q̂L ∈ [0, qH ]. For any qL ∈ (0, q̂L),D(x∗(qL), qL) <

0. So v∗L(qL) < vH(x
∗(qL)) ≤ v∗H . For any qL ∈ [q̂L, qH), D(x∗(qL), qL) ≥ 0.

By the Envelope theorem,
dv∗L
dqL

(qL) =
∂vL
∂qL

(x∗(qL), qL) =
∂D
∂qL

(x∗(qL), qL) > 0.
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Hence, v∗L(qL) < v∗L(qH) = uH0 +
ūH

1+
l1
β

= vH(
l1
β
) ≤ v∗H .

Now consider the first no-intermediate cascade condition u(qL, V0) = 0.

In this case, D(x, qL) = ūLm1(x). Step 1 immediately follows because

ūL > 0 and ∂ūL

∂qL
> 0. Step 2 is simply a contrapositive of the preliminary

property 1: ∂m1

∂x
< 0 whenever m1(x) ≥ 0. A similar argument as in Step

3 brings us to the same conclusion.

A.4 Proof of Theorem 1

Now that we rule out the basic-in scheme, we can merge the single-version

and basic-out problem into a general problem

max
xL,x∆≥0

v(xL, x∆) := µ1(1 + βx∆)
β̄xL − l1

β̄xL − βx∆

[uH0 +
ūL

1 + xL

+
ūH − ūL

1 + x∆

]

(14)

s.t. x∆ ≤ xL, β̄x∆ > βxL and βx∆ ≤ l1 ≤ β̄xL

Denote the constraint set by C (β̄, β) and x := (xL, x∆). The first-order

partial derivative of v with respect to x∆ is ∂v
∂x∆

(xL, x∆) =

µ1(β̄xL − l1)

(β̄xL − βx∆)2(1 + x∆)2
[((uH0 +

ūL

1 + xL

)(β̄βxL + β) + (ūH − ūL)β
2)x2

∆

+ 2((uH0 +
ūL

1 + xL

)(β̄βxL + β) + (ūH − ūL)β)x∆

+ (uH0 +
ūL

1 + xL

)(β̄βxL + β) + (ūH − ūL)((β − 1)β̄xL + β)] (15)

Fixing any xL > 0 , v either increases in x∆ on (0,∞) or decreases first

and then increases in x∆ on (0,∞). Hence, at the optimal solution, x∆

always hits or stays as close as possible to one of the constraints. If the

basic-out scheme outperforms the single-version scheme, it is optimal to

stay as close to the basic-out constraint β̄x∆ > βxL as possible. While we
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cannot reach the constraint, an ε-optimal menu always exists. Remember

that x∗
2, as defined in (7), maximises the seller’s profit when the basic-out

constraint binds16. By the definition of the first-order partial derivative,

for any ε > 0, there exists δ(ε) > 0 such that

|
v(x∗

2, x∆)− v(x∗
2,

β

β̄
x∗
2)

x∆ − β

β̄
x∗
2

− ∂v

∂x∆

(x∗
2,
β

β̄
x∗
2)| < ε,∀x∆ ∈ (

β

β̄
x∗
2,
β

β̄
x∗
2 + δ(ε))

(16)

which implies

|v(x∗
2, x∆)−v(x∗

2,
β

β̄
x∗
2)| < (ε+| ∂v

∂x∆

(x∗
2,
β

β̄
x∗
2)|)|x∆−

β

β̄
x∗
2|,∀x∆ ∈ (

β

β̄
x∗
2,
β

β̄
x∗
2+δ(ε)).

Hence, (x∗
2,

β

β̄
x∗
2 + d) where d = min{δ(ε), 1

2
, ε

2| ∂v
∂x∆

(x∗
2,

β

β̄
x∗
2)|
} is an ε-optimal

menu17. If the single-version scheme (x∆ = xL) outcompetes the basic-out

scheme, an optimal menu always exists as in (6).

A.5 Proof of Lemma 3

Note first that in the informative limit (β̄ → ∞, β → 0), the conditional

probabilities of buy cascades are not well-defined. What I discuss here only

informs us of what happens when the private belief bounds get close to the

limit.

The outline of proof is as follows. The first step provides preliminary

results on the differentiability of v∗i in β. Then, I show that a single-version

strategy is optimal around the noisy limit. The third step proves that a

single-version strategy is optimal for all possible β when the single-version

condition (8) holds. I finish the proof by comparing the optimal profits

from the two versioning strategies around the informative limit.

16The solution to (7) must exist because it has a continuous objective function and a
bounded, convex feasible set.

17d is well-defined since ∂v
∂x∆

(xL, x∆) never approaches infinity on the bounded feasible
set of (xL, x∆) in problem (14)
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The first-order derivatives of vi’s w.r.t. x (vi defined in 6 and 7) will be

important to the following analysis:

∂v1
∂x

=
µ1

1− β

β̄

[(
β +

l1
β̄x2

)(
uH0 +

ūH

1 + x

)
+ (1 + βx)

(
1− l1

β̄x

)
−ūH

(1 + x)2

]
(17)

∂v2
∂x

=
µ1

1− β2

β̄2

[

(
β2

β̄
+

l1
β̄x2

)uH0 +
ūL

1 + x
+

ūH − ūL

1 +
β

β̄
x

+

(1 +
β2

β̄
x)

(
1− l1

β̄x

)− ūL

(1 + x)2
− ūH

(1 +
β

β̄
x)2

β

β̄

] (18)

Step 1: show that the value functions v∗1 and v∗2 are continuously

differentiable and the Envelope theorem applies.

The Lagrangian of the single-version problem (6) is

L1 = v1(x, β̄, β)− γ1
1(
l1
β̄
− x)− γ2

1(x− l1
β
) (19)

where γ’s are the Lagrangian multipliers. By checking the first-order deriva-

tive with respect to x, it is easy to show the constraint x ≥ l1
β̄
never binds.

Hence, γ1
1 = 0. Consider the Hessian matrix:

D2Lx,γ2
1
=

∣∣∣∣∣∣
∂2v
∂x2

∂2v
∂γ2

1∂x

∂2v
∂x∂γ2

1

∂2v
∂(γ2

1)
2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∂2v
∂x2 −1

−1 0

∣∣∣∣∣∣ = 1 > 0,

for at any (x, γ2
1) ∈ (0,∞)2. According to Theorem 19.5 and Theorem 19.9

of Simon and Blume (1994), the value function v∗1 is continuously differen-

tiable in (β̄, β). Moreover,
∂v∗1
∂β̄

= ∂v
∂β̄
(x∗

1, x
∗
1; β̄, β) and

∂v∗1
∂β

= ∂v
∂β
(x∗

1, x
∗
1; β̄, β)−

γ1
1(β̄, β)

l1
β2 .
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Let the Lagrangian of the single-version problem (7) be

L2 = v(x,
β̄

β
x; β̄, β)− γ1

2(
l1
β̄
− x)− γ2

2(x− l1β̄

β2 ) (20)

where γ’s are the Lagrangian multipliers. With a similar argument, we can

show the value function v∗2 is continuously differentiable in (β̄, β).

The constraint x = l1β̄
β2 will not bind whenever v∗2 = v∗1 because v1(

l1
β
) >

v2(
l1β̄
β2 ). If the seller starts an immediate cascade, she will prefer a single-

version strategy to avoid paying information rents.

Step 2: Noisy limit

Consider the single-version problem (6) first. ∀x > 0, we have
1−β

β̄

µ1

∂v1
∂x

β̄→1+0−−−−→
β→1−0(

1 + l1
x2

)
uH0 +

ūH

1+x

[
l1
x2 +

l1
x

]
> 0. Hence, ∀x > 0 and β close enough to 1,

∂v1
∂x

(x,β) > 0. It follows that x∗
1 =

l1
β
around the noisy limit, which gives a

profit v∗1 = uH0 +
ūH

1+l1/β
.

Similarly, we can show that ∀x > 0,
1−β2

β̄2

µ1

∂v2
∂x

β̄→1+0−−−−→
β→1−0

(
1 + l1

x2

)
uH0 +(

l1
x2 +

l1
x

)
ūH

1+x
> 0. Hence, ∀x > 0 and β close enough to (1, 1), ∂v2

∂x
(x,β) >

0 . x∗
2 = l1β̄

β2 around the noisy limit, giving a profit v∗2 = uH0 +
ūL

1+
l1β̄

β2

+

ūH−ūL

1+
l1
β

< v∗1 = uH0 +
ūH

1+l1/β
.

Step 3: Optimality of a single-version strategy

We prove the following statement, which is also used in the proof of

Theorem 2:

Claim 2 (Binding Constraint in the Limit). ∀β̄ ∈ (1,∞), the constraint

x ≤ l1
β
binds for the single-version problem (6) in the limit β → 0 + 0 if

and only if l1uH0 ≥ β̄ūH . Furthermore, if l1uH0 ≥ β̄ūH , for any β ∈ (0, 1),

x ≤ l1β̄
β2 binds for the limit basic-out problem (7) and thus v∗2(β) < v∗1(β).
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Proof. For any x > 0, we have

lim
β→0+0

∂v1
∂x

(
x, β̄, β

)
=

µ1

x2β̄(1 + x)2
[(
l1uH0 − ūH β̄

)
x2 + 2l1uH1x+ l1uH1

]
.

If l1uH0− ūH β̄ ≥ 0, limβ→0+0
∂v1
∂x

(
x, β̄, β

)
≥ 0,∀x > 0 when β is sufficiently

close to 0. It follows that x∗
1(β) =

l1
β
for small enough β. If instead l1uH0−

ūH β̄ < 0, ∂v1
∂x

(
l1
β
, β̄, β

)
= µ1(

ll
β

)2(
1+

l1
β

)2
β̄

[(
l1uH0 − ūH β̄

)
l21 + 2l21βuH1x+ l1uH1β

]
<

0 for small enough β. x = l1
β
cannot be optimal.

From now on, assume l1uH0 − ūH β̄ ≥ 0. With a similar argument, we

can show that the constraint x ≤ l1β̄
β2 also binds for β sufficiently close to

0.18

Next, we prove the following statement: if γ2
2(β̄, β) > 0 for β sufficiently

close to zero, ∀β ∈ (0, 1), γ2
2(β̄, β) > 0. We will first show that the level

curve at a constrained optimizer x∗(β̄, β) = ( l1β̄
β2 ,

l1
β
) has a slope dxL

dx∆
> β̄

β
.

Second, dxL

dx∆
increases in β whenever the slope gets sufficiently close to β̄

β
.

The final step will prove that the constraint x ≤ l1β̄
β2 must be binding for

all possible β ∈ (0, 1).

It is without loss to take ln v as our objective function because v > 0

except at xL = l1
β̄
which is never optimal. The level curves are characterized

by

ln v (xL, x∆) = lnµ1 + ln
(
1 + βxL

)
+ ln

(
β̄xL − l1

)
− ln

(
β̄xL − βx∆

)
+ ln

(
uH0 +

ūL

1 + xL

+
ūH − ūL

1 + x∆

)
= C where C can be any constant.

Notice that ∀xL > 0, x∆ = l1/β,
∂ ln v
∂xL

(xL, x∆) =
−ūL

(1+xL)
2/
(
uH0 +

ūL

1+xL
+ ūH−ūL

1+x∆

)
<

0. It has two implications.

First, by the Implicit Function Theorem and v being continuously dif-

ferentiable within the constraint set, there exists an open ball around the

18It requires a weaker condition, l1uH0 − ūLβ̄ ≥ 0.
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constrained optimizer where ∂ ln v
∂xL

(xL, x∆, β̄, β) < 0 and the level curve can

be thought of as the graph of a continuous function xL(x∆). Its slope

g(xL, x∆, β̄, β) :=
dxL

dx∆
(xL, x∆, β̄, β) is defined by ∂ ln v

∂xL

dxL

dx∆
+ ∂ ln v

∂x∆
= 0.

On the horizontal line x∆ = l1/β, all the points left (right) to the

constrained optimizer give a profit higher (lower) than at the optimizer.

Also, γ2
2(β̄, β) > 0 implies that along the constraint x∆ =

β

β̄
xL, lower

(higher) points to the constrained optimizer give lower (higher) profits

than at the optimizer. Given that ∂ ln v
∂x∆

crosses zero at most once from

below for all x ∈ ( l1
β̄
,∞)2 (see the proof for Theorem 1), we must have

dxL

dx∆
( l1β̄
β2 ,

l1
β
, β̄, β) > β̄

β
.

Using the Implicit Function Theorem again, we have

∂g

∂β
(xL, x∆, β̄, β) = −

1

(1+βx∆)
2 +

β̄xL−β̄x∆g

(β̄xL−βx0)
2

∂ ln v
∂xL

= −

1

(1+βx∆)
2 +

β̄xL−β̄x∆g

(β̄xL−βx∆)
2

β̄
β̄xL−l1

− β̄
β̄xL−βx∆

+ −ūL

(1+xL)
2/
(
uH0 +

ūL

1+xL
+ ūH−ūL

1+x∆

)
It is continuous in x and β whenever ∂ ln v

∂xL
̸= 0 and x ∈ C (β)\{xL = l1/β̄}.

Moreover, when the slope approaches β̄
β
from above, g → β̄

β
+ 0, and x∆ =

β

β̄
xL, the numerator of ∂g

∂β
is positive as −β̄xL+β̄x∆g = xL(β̄−βg) → 0. So

∂g
∂β
( l1β̄
β2 ,

l1
β
, β̄, β) > 0 at the constrained optimizer whenever g( l1β̄

β2 ,
l1
β
, β̄, β) is

sufficiently close to β̄
β
.

Suppose by contradiction that there exists a β′ := inf{β ∈ (0, 1) :

γ2
2(β̄, β) = 0}. As implied by the Envelope theorem (See Step 1 of this

section), the value function v∗2(β) and x∗
2(β) are continuous in β. Given

that the constraint is binding for small enough β , we can find a monoton-

ically increasing sequence {gn}∞n=1, where gn := g( l1β̄
β2
n

, l1
β
n

, β̄, β
n
),∀n ≥ 1,

such that limn→∞ gn = g′ := β̄
β′ . This contradicts with the fact that

∂g
∂β
( l1β̄
β2 ,

l1
β
, β̄, β) > 0 whenever g( l1β̄

β2 ,
l1
β
, β̄, β) is sufficiently close to β̄

β
. Thus,
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γ2
2(β̄, β) > 0 for all possible β ∈ (0, 1).

To derive the single-version condition (8), note that l1uH0 ≥ β̄ūH ⇔

uH0 ≥ β̄
1−µ1+β̄

µ1uH1. Since β̄
1−µ1+β̄

∈ [ 1
2−µ1

, 1] for all possible β̄ ∈ [0,∞],

the single-version condition uH0 ≥ µ1uH1 guarantees the optimality of a

single-version strategy for all possible β ∈ (1,∞)× (0, 1).

Step 4: Informative limit

One implication of the previous step is that a single-version strategy

is optimal around the informative limit under the single-version condition,

uH0 ≥ µ1uH1. Now we will show that when the condition fails, v∗2(β) <

v∗1(β) as β gets sufficiently close to (∞, 0). Specifically, the main step is

to prove that, if µ1uH1 > uH0 + ūH/(1+ l1/β), limβ̄→∞(v∗2(β)− v∗1(β)) = 0

and limβ̄→∞(
∂v∗2
∂β̄

(β) − ∂v∗1
∂β̄

(β)) < 0. As a result, given any β ∈ (0, 1),

v∗2(β̄, β)− v∗1(β̄, β) approaches zero from above as β̄ approaches infinity. It

is then easy to verify that uH0 < µ1uH1 ⇒ µ1uH1 > uH0 + ūH/(1 + l1/β)

for small enough β > 0.

Suppose µ1uH1 > uH0 + ūH/(1 + l1/β). Consider the single-version

problem (6) first. According to (18), the first-order derivative is positive

at x = l1
β̄
, which implies x∗

1 >
l1
β̄
.

Suppose x∗
1(β) is bounded away from zero as β̄ → ∞. ∂v1

∂x
approaches

µ1βuH0

(1+x)2
[(1 + x)2 − ūH(1−β)

uH0β
] at any x > 0. The optimal x∗

1 either gets arbi-

trarily close to the left boundary l1
β̄
which approaches zero in the limit and

contradicts our assumption. Or the optimizer hits the right boundary l1
β

and generates a profit v∗1 = uH0 + ūH/(1 + l1/β).

Suppose x∗
1(β) → 0 + 0 in the limit. Fix any x > 0 and we have

limβ̄→∞
∂v1
∂x

= µ1[(β + l1
x2β̄

uH1)(uH0 +
ūH

1+x
) + (1 + βx)(1 − l1

β̄x
) −ūH

(1+x)2
]. The

first observation is that β̄x∗
1 cannot be bounded. Otherwise, the first-order

derivative goes to (positive) infinity at x → 0 + 0 which contradicts our
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assumption that x∗
1(β) → 0 + 0. So β̄x∗

1 → ∞ and thus v∗1 = µ1uH1 in the

limit. According to our assumption, this profit is higher than that obtained

at x = l1
β
. It follows that limβ̄→∞ v∗1(β̄, β) = µ1uH1.

Similarly, we can show that x∗
2 → 0+ 0 and v∗2 → µ1uH1 as β̄ → ∞. To

summarize, we have limβ̄→∞(v∗2(β)−v∗1(β)) = 0 and none of the constraints

will bind as β̄ → ∞. By the Envelope theorem, we can write

∂v∗2
∂β̄

− ∂v∗1
∂β̄

=
µ1

β̄


 2 + l1

x∗
2β̄

3 +
β2x∗

2

β̄(
1− β

β̄

)(
1 +

β

β̄

) −
2
(
1 +

β2

β̄
x∗
2

)(
1− l1

x∗
2β̄

)
(
1− β

β̄

)2

uH0 +

ūL

1 + x∗
2

+
ūH − ūL

1 +
β

β̄
x∗
2


+

(
1 +

β2

β̄
x∗
2

)(
1− l1

x∗
2β̄

)
1− β2

β̄2

β
− (ūH − ūL)(
1 +

β

β̄
x∗
2

)2 −
(
uH0 +

ūH

1 + x∗
1

)
l1 − βx∗

1

β̄x∗
1 − βx∗

1

1 + βx∗
1

1− β

β̄

]

The expression inside the square bracket approaches −β(ūH − ūL) < 0

as β̄ → ∞. Hence, limβ̄→∞(
∂v∗2
∂β̄

(β)− ∂v∗1
∂β̄

(β)) < 0.

A.6 Proof of Theorem 2

Here is the formal statement that we will prove. If v∗2(β) − v∗1(β) ever

switches the sign on β ∈ (1,∞)× (0, 1),

1. fixing any β ∈ (0, 1), there exists a unique threshold β̄0 ∈ (1,+∞)

such that v∗1(β̄) ≤ v∗2(β̄) if and only if β̄ ∈ [β̄0,+∞);

2. fixing any β̄ ∈ (1,∞), there exists a unique threshold β
0
∈ (0, 1) such

that v∗1(β) ≤ v∗2(β) if and only if β ∈ (0, β
0
].

The first step proves that it suffices to compare the value functions in

a modified basic-out problem and the single version problem. Then, Step

2 and 3 prove the comparative statics results for β̄ and β correspondingly.

Step 1: introduce a modified basic-out problem.
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Given the value functions v∗i are continuously differentiable (see the

previous proof A.5), it suffices to show that v∗1(β0) = v∗2(β0) whenever

∂v∗1
∂β̄

(β0) <
∂v∗2
∂β̄

(β0) and
∂v∗1
∂β

(β0) >
∂v∗2
∂β

(β0),

which will ensure the thresholds β̄0 and β
0
are unique. Let x0 := (x0

1, x
0
2) :=

(x∗
1(β0), x

∗
2(β0)).

Now we introduce a modified seller’s problem where we shut down the

indirect effect from β on the optimal profits through the basic-out con-

straint (x∆ =
β

β̄
xL).

max
xL,x∆≥0

v(xL, x∆) := µ1(1 + βx∆)
β̄xL − l1

β̄xL − βx∆

[uH0 +
ūL

1 + xL

+
ūH − ūL

1 + x∆

]

(21)

s.t. x∆ ≤ xL, β̄0x∆ ≥ β
0
xL and βx∆ ≤ l1 ≤ β̄xL

Let v̂2(x,β,β0) := v(x,
β
0

β̄0
x;β). The third argument β0 denotes the fixed

β0’s in the basic-out constraint. The value function in the modified limit

basic-out problem is then defined as

v̂∗2(β,β0) := max v̂2(x,β,β0) s.t.
l1
β̄

≤ x ≤ l1β̄0

ββ
0

and let x̂∗
2(β,β0) be the maximizer.

Since v∗1(β0) = v∗2(β0) = v̂∗2(β0,β0), we have (a) x̂
∗
2(β0,β0) = x∗

2(β0) =

x0
2 ∈ ( l1

β̄
, l1β̄0

β2
0

) and (b) ∂v
∂x∆

(x0
2,

β
0

β̄0
x0
2,β0) ≤ 0. As a result,

∂v∗2
∂β̄

(β0) =[
∂
∂β̄
v(x,

β

β̄
x;β)

]
|β=β0,x=x0

2
=
[

∂v
∂x∆

(x,
β

β̄
x;β)·(−βx

β̄2 )+
∂v
∂β̄
(x,

β

β̄
x;β)

]
|β=β0,x=x0

2
.

∂v̂∗2
∂β̄

(β0) =
[

∂
∂β̄
v(x,

β
0

β̄0
x;β)

]
|β=β0,x=x0

2
= ∂v

∂β̄
(x,

β
0

β̄0
x;β)|β=β0,x=x0

2
≤ ∂v∗2

∂β̄
(β0).

Similarly, we can show that
∂v̂∗2
∂β

(β0) =
∂v
∂β
(x,

β
0

β̄0
x;β)|β=β0,x=x0

2
≥ ∂v∗2

∂β
(β0) =[

∂v
∂x∆

(x,
β

β̄
x;β)·(x

β̄
)+ ∂v

∂β
(x,

β
0

β̄0
x;β)

]
|β=β0,x=x0

2
. Combining with the fact that
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the optimal profits are positive, it suffices to show

∂ ln v̂∗2
∂β̄

(β0,β0) >
∂ ln v∗1
∂β̄

(β0) and
∂ ln v̂∗2
∂β

(β0,β0) <
∂ ln v∗1
∂β

(β0).

Moreover, by the Envelope theorem and v̂∗2(β0,β0) = v∗1(β0), we have

∂ ln v̂∗2
∂β

(β0,β0) =

∂v̂2
∂β

(x0
2,β0,β0)

v̂2(x0
2,β0,β0)

=
∂ ln v̂2
∂β

(x0
2,β0,β0) for all β ∈ {β̄, β}

and

∂ ln v∗1
∂β̄

(β0) =
∂ ln v1
∂β̄

(x0
1,β0) and

∂ ln v∗1
∂β

(β0) =
∂ ln v1
∂β

(x0
1,β0)− γ̃2

1(β0)
l1

β2

0

where γ̃2
1(β) :=

γ2
1(β)

v1(x0
1,β)

.

Step 2: ∂ ln v̂2
∂β̄

(x0
2,β0,β0) >

∂ ln v1
∂β̄

(x0
1,β0).

DefineK(x0,β,β0) = ln v̂2(x
0
2,β,β0)−ln v1(x

0
1,β). Then

∂K
∂β̄

(x0,β,β0) =

∂ ln v̂2
∂β̄

(x0
2,β,β0)− ∂ ln v1

∂β̄
(x0

1,β) =
x0
2

β̄x0
2−l1

− 1

β̄−β
β
0

β̄0

− x0
1

β̄x0
1−l1

+ 1
β̄−β

.

Fixing any β ∈ (0, 1), I want to show ∂K
∂β̄

≤ 0 =⇒ ∂2K
∂β̄2 > 0.

∂2K

∂β̄2
(x0,β,β0) =

∂2 ln v̂2
∂β̄2

(x0
2,β,β0)−

∂2 ln v1
∂β̄2

(x0
1,β)

= −
(

x0
2

β̄x0
2 − l1

)2

+
1

(β̄ − β
β
0

β̄0
)2

+

(
x0
1

β̄x0
1 − l1

)2

− 1

(β̄ − β)2

=
( x0

1

β̄x0
1 − l1

− x0
2

β̄x0
2 − l1

)( x0
1

β̄x0
1 − l1

+
x0
2

β̄x0
2 − l1

)
−( 1

β̄ − β
− 1

β̄ − β
β
0

β̄0

)( 1

β̄ − β
+

1

β̄ − β
β
0

β̄0

)

≥

 1

β̄ − β
− 1

β̄ − β
β
0

β̄0

 x0
1

β̄x0
1 − l1

− 1

β̄ − β
+

x0
2

β̄x0
2 − l1

− 1

β̄ − β
β
0

β̄0


> 0.
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The first inequality follows from the fact that
(

x0
1

β̄x0
1−l1

+
x0
2

β̄x0
2−l1

)
> 0 and

∂K
∂β̄

≤ 0. The second inequality holds because x0
2 <

l1β̄0

ββ
0

and x0
1 ≤ l1

β
.

Since ∂K
∂β̄

(x0,β,β0) is continuous in β̄, it crosses zero at most once

from below. Note also that limβ̄→∞
∂K
∂β̄

(x0,β,β0) = 0. ∂K
∂β̄

(x0,β,β0) is

thus either strictly positive or strictly negative on β̄ ∈ (1,∞).

Next, I want to prove

lim
β̄→∞

K(x0, β̄, β
0
,β0) = ln

(1 + β2

0

β̄0

x0
2

)uH0 +
ūL

1 + x0
2

+
ūH − ūL

1 +
β
0

β̄0
x0
2


− ln

(
(1 + β

0
x0
1)

(
uH0 +

ūH

1 + x0
1

))
> 0 (22)

, which, together with K(x0, β̄0, β0
,β0) = 0, implies ∂K

∂β̄
(x0, β̄, β

0
,β0) >

0,∀β̄ > 1. In particular, it holds true at β̄ = β̄0 and we complete Step 2.

Let λ1(x1) :=
β̄− l1

x1

β̄−β
be the probability of a premium cascade conditional

on state ω = 1. Likewise, define λ2(x2) :=
β̄− l1

x2

β̄−β2

β̄

. It is easy to verify that

both functions are strictly increasing and have a range [0, 1]. Hence, their

inverse functions exist. We can then rewrite the profit functions for both

problems as

vi(λ) = vi(λ
−1
i (λ)) = λiPi(λ),

for all i ∈ {1, 2}, where Pi(λ)’s are pseudo price functions:

P1(λ) :=µ1

(
1 + β

l1
β̄ − λ(β̄ − β)

)(
uH0 +

ūH

1 + l1
β̄−λ(β̄−β)

)

P2(λ) :=µ1

1 +
β2

β̄

l1

β̄ − λ(β̄ − β2

β̄
)


uH0 +

ūL

1 + l1

β̄−λ(β̄−β2

β̄
)

+
ūH

1 +
β

β̄
l1

β̄−λ(β̄−β2

β̄
)


It turns out that the two pseudo-price functions cross each other at

most once. I prove the following lemma in Appendix A.6.1.
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Lemma 5. There exists λ̃ ∈ [0, 1] such that P2(λ) ≤ P1(λ) if and only if

λ ≥ λ̃.

Let λ0
i := λi(x

0
i ) and P 0

i := Pi(λ
0
i ), ∀i ∈ {1, 2}. The inequality (22) is

then equivalent to P 0
2 > P 0

1 , or equivalently λ0
2 < λ0

1.

First, we can show λ0
2 ≤ λ0

1. Note that λ
0
1P

0
1 = λ0

2P
0
2 = maxλ∈[0,1] λP1(λ) =

maxλ∈[0,1] λP2(λ) and λ0
2 < 1. Since P2 (λ

0
1)λ

0
1 ≤ P 0

2 λ
0
2 = P 0

1 λ
0
1, we must

have P2 (λ
0
1) ≤ P 0

1 = P1 (λ
0
1). By Lemma 5, P2(λ) < P1(λ),∀λ > λ0

1. Thus,

any λ higher than λ0
1 cannot be λ0

2. Formally, for any λ > λ0
1, v2(λ) =

λP2(λ) < λP1(λ) = v1(λ) ≤ v1 (λ
0
1) = v2 (λ

0
2).

Suppose by contradiction that λ0
2 = λ0

1. Then, P 0
2 = P 0

1 and P2(λ)

crosses P1(λ) from above at λ0
1. It follows that P

′
2 (λ

0
1) < P ′

1 (λ
0
1). But profit

maximization requires v′1 (λ
0
1) ≤ 0 = v′2(λ

0
2). Thus, P ′

1(λ
0
1)λ

0
1 + P1 (λ

0
1) ≤

P ′
2 (λ

0
1)λ

0
1 + P2 (λ

0
1) ⇒ P ′

1 (λ
0
1) ≤ P ′

2 (λ
0
1). Contradiction.

Step 3: ∂ ln v̂2
∂β

(x0
2,β0,β0) <

∂ ln v1
∂β

(x0
1,β0)− γ̃2

1(β0)
l1
β2
0

.

Define K̃(x0,β,β0) = ln v̂2(x
0
2,β,β0) − ln v1(x

0
1,β) − γ̃2

1(β0)
l1
β
. Then

∂K̃
∂β

(x0,β,β0) =
β
0
x0
2/β̄0

1+βx0
2

β
0

β̄0

+
β
0
/β̄0

β̄−β
β
0

β̄0

− x0
1

1+βx0
1
− 1

β̄−β
+ γ̃2

1(β)
l1
β2 . As a first step, I
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want to show that, for any β̄ ∈ (0, 1), ∂K̃
∂β

≥ 0 ⇒ ∂2K̃
∂β2 < 0. Suppose ∂K̃

∂β
≥ 0.

∂2K̃2

∂β2 =

 x0
1

1 + βx0
1

−
β
0
x0
2/β̄0

1 + βx0
2

β
0

β̄0

 x0
1

1 + βx0
1

+
β
0
x0
2/β̄0

1 + βx0
2

β
0

β̄0


−

 1

β̄ − β
−

β
0
/β̄0

β̄ − β
β
0

β̄0

 1

β̄ − β
+

β
0
/β̄0

β̄ − β
β
0

β̄0

− γ̃2
1(β)

2l1

β3

≤ −

 1

β̄ − β
−

β
0
/β̄0

β̄ − β
β
0

β̄0

 x0
1

1 + βx0
1

+
β
0
x0
2/β̄0

1 + βx0
2

β
0

β̄0


−

 1

β̄ − β
−

β
0
/β̄0

β̄ − β
β
0

β̄0

 1

β̄ − β
+

β
0
/β̄0

β̄ − β
β
0

β̄0


+ γ̃2

1(β)
l1

β2

 x0
1

1 + βx0
1

+
β
0
x0
2/β̄0

1 + βx0
2

β
0

β̄0

− 2

β

 < 0,∀β̄ ∈ (1,∞), β ∈ [0, 1].

The first inequality follows from ∂K̃
∂β

≥ 0. The second follows from (a)

1
β̄−β

− β
0
/β̄0

β̄−β
β
0

β̄0

> 0; (b) x0
1 ≤ l1/β and x0

2 ≤
l1β̄0

ββ
0

; and (c) γ̃1
1(β) ≥ 0.

Thus, for any given β̄ ∈ (1,∞), ∂K̃
∂β

(x0,β,β0) crosses zero at most once

and must be from above on β ∈ [0, 1].

Given the assumption v∗1(β0) = v∗1(β0) at some β0 ∈ (1,∞)× (0, 1), we

know from Claim 2 that l1uH0 < ūH β̄0. So limβ→0+0 γ̃
2
1(β̄0, β) = 0 for small

enough β. The next step is to prove

lim
β→0+0

K̃(x0, β̄0, β,β0) = ln

µ1

(
β̄0x

0
2 − l1

β̄0x0
2

)uH0 +
ūL

1 + x0
2

+
ūH − ūL

1 +
β
0

β̄0
x0
2


− lnµ1

((
β̄0x

0
1 − l1

β̄0x0
1

)(
uH0 +

ūH

1 + x0
1

))
> 0 (23)

Claim 3. x0
1 >

β
0

β̄0
x0
2.

Proof. From the previous analysis we know xL = l1
β̄

never binds and

v(xL, x∆) > 0,∀xL ̸= l1
β̄
. For this proof, it is without loss to take ln v
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as our objective function in the general problem.

First, we prove that, given any feasible x∆, once
∂ ln v
∂xL

turns nonpositive

(negative) at some xL > 0, it stays nonpositive (negative) as xL further

increases. For x ∈ C (β)\{xL = l1
β̄
}, we have ∂ ln v

∂xL
≥ 0 ⇔

((
−β̄βx∆ + β̄l1

)(
uH0 +

ūH − ūL

1 + x∆

)
− ūLβ̄

2

)
x2
L

+

[(
−β̄βx∆ + β̄l1

) [
2

(
uH0 +

ūH − ūL

1 + x∆

)
+ ūL

]
+ ūL

(
l1β̄ + β̄βx∆

)]
xL

+
(
−β̄βx∆ + β̄l1

) [
uH0 +

ūH − ūL

1 + x∆

+ ūL

]
− ūLl1βx∆ ≥ 0

The left-hand-side function is a quadratic function of xL with a positive

coefficient before xL. It can be verified that the quadratic function is non-

negative at xL = l1
β̄
. Therefore, it is either nonnegative for all feasible

xL or strictly decreases from a nonnegative value. ∂ ln v
∂xL

(xL, x∆) ≤ 0 ⇒
∂ ln v
∂xL

(x′
L, x∆) < 0, ∀x′

L > xL.

Second, ∂ ln v
∂xL∂x∆

=
−β̄β

(β̄xL−βx0)
2 − ūL

(1+xL)
2

(ūH−ūL)/(1+x∆)2(
uH0+

ūL
1+xL

+
ūH−ūL
1+x∆

)2
< 0, ∀x ∈

C (β), 0 < β < 1 < β̄.

For all x∆ > x0
1 and xL ≥ β̄0

β
0

x0
1, the optimality of x1

0 implies ∂ ln v
∂xL

(x0
1, x

0
1) ≤

0 ⇒ ∂ ln v
∂xL

(
β̄0

β
0

x0
1, x

0
1

)
< 0 ⇒ ∂ ln v

∂xL

(
β̄0

β
0

x0
1, x∆

)
< 0 ⇒ ∂ ln v

∂xL
(xL, x∆) < 0. Any

x2 ≥ β̄0

β
0

x0
1 cannot be x0

2 since an optimizer to the general problem (14)

must satisfy ∂ ln v
∂xL

(
x2,

β
0

β̄0
x2

)
≥ 0.
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To complete the proof, use v∗1(β0) = v∗1(β0) and Claim 3 and we have

µ1
β̄0x

0
1 − l1

(β̄0 − β
0
)x0

1

(
uH0 +

ūH

1 + x0
1

)
< µ1

β̄0x
0
2 − l1

(β̄0 −
β2
0

β̄0
)x0

2

uH0 +
ūL

1 + x0
2

+
ūH − ūL

1 +
β
0

β̄0
x0
2


⇔ µ1

β̄0x
0
1 − l1

β̄0x0
1

(
uH0 +

ūH

1 + x0
1

)
< µ1

β̄0x
0
2 − l1

β̄0x0
2

(β̄0 − β
0
)

β̄0 −
β2
0

β̄0

uH0 +
ūL

1 + x0
2

+
ūH − ūL

1 +
β
0

β̄0
x0
2


< µ1

β̄0x
0
2 − l1

β̄0x0
2

uH0 +
ūL

1 + x0
2

+
ūH − ūL

1 +
β
0

β̄0
x0
2

 .

A.6.1 Proof of Lemma 5

Let A(λ) := β̄ − λ
(
β̄ − β2

β̄

)
and B(λ) := β̄ − λ(β̄ − β).

P2(λ) ≤ P1(λ) ⇔

µ1

1 +
β2

β̄

l1

β̄ − λ(β̄ − β2

β̄
)


uH0 +

ūL

1 + l1

β̄−λ(β̄−β2

β̄
)

+
ūH

1 +
β

β̄
l1

β̄−λ(β̄−β2

β̄
)


− µ1

(
1 + β

l1
β̄ − λ(β̄ − β)

)(
uH0 +

ūH

1 + l1
β̄−λ(β̄−β)

)
≤ 0

Rearrange the inequality and, using the fact that B + l1 > 0, l1 > 0, we

have P2(λ) ≤ P1(λ) ⇔

ūH l1(1− β) ≤

ūL

(
1−

β2

β̄

)
B + l1
A+ l1

+ (ūH − ūL)
β

β̄
(1− β)

B + l1

A+ β̄l1
β̄

+ uH0β
A− β

β̄
B

AB
(B + l1)

Let’s define h1(λ) := ūH l1(1−β)− ūL

(
1− β2

β̄

)
B+l1
A+l1

− (ūH − ūL)
β

β̄
(1−

β) B+l1

A+
β̄l1
β̄

and h2(λ) := uH0β
A−β

β̄
B

AB
(B + l1). We want to prove h(λ) =

h1(λ) − h2(λ) crosses zero on λ ∈ [0, 1] at most once and must be from

above.
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The next claim collects several useful properties of functions h1, h2, A, and B.

Claim 4. For all λ ∈ [0, 1],

1. 0 < −B′(λ) < −A′(λ) and 0 < A(λ) < B(λ).

2. h′
1(λ) < 0. h′′

1(λ) >
−2A′

A
h′
1(λ).

3. h2(λ) ≥ 0. The equality holds only at λ = 1. h′′
2(λ) <

−2A′

A
h′
2(λ).

Proof. I will prove h′′
1(λ) >

−2A′

A
h′
1(λ) and h′′

2(λ) <
−2A′

A
h′
2(λ). The other

results are easy to verify.

h′′
1(x) = −ūL

(
1−

β2

β̄

)(
β̄ + l1

)
β

(
1−

β2

β̄

)
−2A′

(A+ l1)
3

− (ūH − uL)
β

β̄
(1− β)

(
l1 + β

)
(β̄ − β)

−2A′(
A+

βl1

β̄

)3
=

−2A′

A+
βl1

β̄

[−ūL

(
1−

β2

β̄

)(
β̄ + l1

)
β

(
1−

β2

β̄

)
1

(A+ l1)
2︸ ︷︷ ︸

<0

A+
βl1

β̄

A+ l1

− (ūH − uL)
β

β̄
(1− β)

(
l1 + β

)
(β̄ − β)

1(
A+

βl1

β̄

)2 ]
⇒ h′′

1(λ) >
−2A′

A+
βl1

β̄

h′
1(λ) >

−2A′

A
h′
1(λ)

The first inequality follows from the formula for h′
1(λ) and 0 <

A+
βl1
β̄

A+l1
< 1.

The second inequality follows from h′
1 < 0,

βl1

β̄
> 0 and A′ < 0.

Likewise, −2A′

A
h′
2(λ)−h′′

2(λ) = uH0
−2A′

A

[
(B + l1)(− B′

B2 )
(
1− B′

B
A
A′

)
+ B′

B

(
1− B′

B
A
A′

)]
=

uH0
−2A′

A

(
1− B′

B
A
A′

)
(−B′

B
) l1
B
> 0.

As a result, h′(λ) = 0 ⇒ h′′(λ) = h′′
1(λ)−h′′

2(λ) >
−2A′

A
(h′

1(λ)−h′
2(λ)) =

0. h(λ) is either monotone or decreases first and then increases on [0, 1].
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Also, it is easy to derive that h(1) = ūL(1 − β)

(
1−

1−β2

β̄

1−β

β+l1
β2

β̄
+l1

)
< 0. If

h(0) ≤ 0, h(λ) ≤ 0,∀λ ∈ [0, 1]. Otherwise, h(0) > 0 > h(1), h(λ) crosses

zero once from above on [0, 1].
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